
www.manaraa.com

Lehigh University
Lehigh Preserve

Theses and Dissertations

2012

Hierarchical Planning Knowledge for Refining
Partial-Order Plans
Stephen Montgomery Lee-Urban
Lehigh University

Follow this and additional works at: http://preserve.lehigh.edu/etd

This Dissertation is brought to you for free and open access by Lehigh Preserve. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of Lehigh Preserve. For more information, please contact preserve@lehigh.edu.

Recommended Citation
Lee-Urban, Stephen Montgomery, "Hierarchical Planning Knowledge for Refining Partial-Order Plans" (2012). Theses and
Dissertations. Paper 1213.

http://preserve.lehigh.edu?utm_source=preserve.lehigh.edu%2Fetd%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd?utm_source=preserve.lehigh.edu%2Fetd%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
http://preserve.lehigh.edu/etd/1213?utm_source=preserve.lehigh.edu%2Fetd%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:preserve@lehigh.edu

www.manaraa.com

Hierarchical Planning Knowledge for Refining Partial-Order Plans

by

Stephen Montgomery Lee-Urban

A Dissertation

Presented to the Graduate and Research Committee

of Lehigh University

in Candidacy for the Degree of

Doctor of Philosophy

in

Computer Science

Lehigh University

May 2012

www.manaraa.com

ii

Copyright by Stephen M. Lee-Urban

2012

www.manaraa.com

iii

Approved and recommended for acceptance as a dissertation in partial fulfillment

of the requirements for the degree of Doctor of Philosophy.

Date

Chair: Héctor Muñoz-Avila

Brian D. Davison

Jeff Heflin

Dana Nau

www.manaraa.com

iv

Acknowledgements

I am humbled by and grateful for my family and friends, who I love dearly. They have

been an inexhaustible source of encouragement, inspiration, support, guidance, and

perspective. Expressing my love and appreciation for my incredible parents, for all they

have done, is like trying to use words to describe a painting or music; just as poets have

interminably struggled to convey the intricacies of love, so too do I accept that no

acknowledgement put forth here can convey how profoundly they have enriched this

dissertation, and my life.

If I could, I would put the following names on the title sheet of this dissertation, and

for more reasons than I list below:

 Kathy (Ed.D., Lehigh University, 1998) and Alfred Lee, my mother and step-

father. It takes more than knowing how to walk in order to keep putting one

foot in front of the other, and more than goals in order to create opportunities.

Very truly, thank you for encouragement, inspiration, editorial perspective…

everything both expressible and otherwise.

 James Urban, my father, who always knows where to look when I’ve lost my

sense of humor or smile. Thank you for insightful perspective through

laughter, and for always being there for me.

 My brother, Nik, who has always had a knack for being, having, or doing

exactly what I need, just when I needed it. The best big brother and champion

anyone could ask for.

www.manaraa.com

v

 Héctor Muñoz-Avila, my advisor, who has supported and guided me in

innumerable ways, who I respect deeply, and who is one of the most

understanding, just, sincere, intelligent and uplifting people I have ever met.

 My committee, Brian Davison, Jeff Heflin, and Dana Nau, with whom I have

been fortunate to work in capacities beyond this dissertation, and from whom I

have learned much about being a researcher and educator.

 Chad Hogg, my “brother PhD”, with whom I shared professor Munoz as

advisor and InSyTe lab as home away from home. We went through the

majority of our PhD programs together, and along the way shared thoughts and

debated intricacies on almost every topic imaginable. One of the most

enlightened, genuine human beings I have ever met.

 My Bethlum All-Stars, for sanity and insanity in proper proportions (in order

of appearance): Mark Hoff, Samir Shaikh, Ben Coppola, Jon McMullen, Keith

Erekson, Sabrina Terrizzi, Jason Semer, Wes Atkinson, Jon Glueck, Zach

Martin, Walt Diller, and the Tulum family.

 Brianne Lisk, who deserves this degree – and that of all the others she has

guided through Lehigh’s graduate engineering college – as much as me.

“Knows it all” is precise, not pejorative, when applied to her.

 Larissa Elsley, and her dog Sadie, who made sure that I didn’t panic, and that I

remembered to occasionally sleep and eat in the final months of my

dissertation.

 Mark Riedl, my boss at Georgia Tech, who hired me the year before I

completed my degree, and who showed heroic patience, support, and

www.manaraa.com

vi

understanding while I balanced researching for him with wrapping up my

degree.

This work was partially supported by the National Science Foundation (grant NSF

0642882), and DARPA’s Transfer Learning program.

www.manaraa.com

vii

Table of Contents

Acknowledgements ... iv

Table of Contents ... vii

List of Tables.. x

List of Figures ... xi

Abstract .. 1

1 Introduction ... 3

1.1 Overview of “Planning” and key open challenges ... 3

1.2 Contributions of This Work .. 10

1.3 Dissertation Outline .. 13

2 Overview of Dissertation .. 14

2.1 Plan Adaptation – The “Grand” Challenge .. 16

2.2 A Motivating Example ... 18

2.3 Research Challenges ... 27

3 Related Work – Planning & Other Approaches .. 32

3.1 Classical Planning and STRIPS Assumptions .. 32

3.1.1 Definitions for Classical Planning .. 38

3.2 Refining Incomplete Plans – State Space vs. Plan Space Planning 43

3.2.1 The State Space – Total Order Planning ... 44

3.2.2 The Plan-space – Partial-Order Planning (POP) 45

3.3 Search Control Knowledge ... 51

www.manaraa.com

viii

3.4 Heuristics in Planning ... 52

3.5 Domain Configurable Planning .. 53

3.5.1 HTN Planning ... 56

3.6 Case-Based Planning .. 57

3.7 Learning and Planning Control Knowledge ... 58

3.8 Plan Adaptation .. 59

3.8.1 Derivational Analogy and Transformational Analogy 61

3.8.2 Plan Repair .. 63

3.8.3 Adaptation Frameworks .. 63

4 Partial Order Planning With Refinement Rules .. 67

4.1 Partial-order Planning Definitions .. 68

4.1.1 Partial-order planning .. 68

4.2 Domain Configurable Planning With Refinement Rules 80

4.2.1 Partial-Order Plan Refinement Rules .. 80

4.2.2 The DCPOP Algorithm ... 91

4.3 Properties of the DCPOP Algorithm .. 96

4.3.1 Soundness .. 96

4.3.2 Completeness .. 97

4.4 Discussion ... 101

5 Hierarchical partial-order plan refinement .. 105

5.1 HIEPPR-POP methods ... 109

5.2 The HIEPPR-POP Algorithm ... 118

5.3 An Example .. 120

www.manaraa.com

ix

5.4 Comparison of HIEPPR-POP to UMCP .. 123

6 Empirical Evaluation .. 127

6.1 DCPOP: Adaptive Planning (small problems) ... 128

6.2 HIEPPR-POP: Generative Planning, Complete Knowledge 136

6.3 HIEPPR-POP: Generative Planning with Incomplete Knowledge 143

7 Conclusions and Future Work .. 146

7.1.1 Scientific Contributions... 149

7.1.2 Future Work .. 152

References .. 157

Appendix D: Glossary of definitions ... 164

Vita ... 177

www.manaraa.com

x

List of Tables

Table 1.1 Dimensions of difficulty for modern planning approaches 5

Table 2.1 A trace of a plan-space search process for the transportation logistics

domain ... 26

Table 3.1. Elements of the domain description input to classical planners 34

Table 3.2 Summary of partial-order plan elements ... 48

Table 3.3 Summary of terms used in partial-order planning. 50

Table 4.1 DCPOP rules encoding the three ways to resolve flaws of type threat. 86

Table 4.2 DCPOP refinement rules encoding the two ways to fix open conditions. .. 87

Table 4.3 Two progressive refinement rules for the transportation logistics domain . 88

file:///C:/Documents%20and%20Settings/Stephen%20Lee-Urban/My%20Documents/dissertation/sml3_dissertation_v2012_05_12_0320_COMMITTEE.docx.doc%23_Toc324562504

www.manaraa.com

xi

List of Figures

Figure 2.1 Example initial and goal state in transportation logistics domain 20

Figure 2.2 Three actions in the transportation logistics domain 22

Figure 2.3 Example rule to express the expert knowledge used in Table 2.1 27

Figure 3.1 One set of operators to define a simple “blocks world” domain 37

Figure 3.2 One valid initial and goal state description for the domain in Figure 3.1.. 38

Figure 3.3 Plan retraction as defined (and depicted) in SPA Figure from [Hanks &

Weld, 1995], and later in TransUCP [Kuchibatla, 2006] and [van der Krogt & de

Weerdt, 2005]. ... 64

Figure 3.4 A removal tree, as depicted in [van der Krogt & de Weerdt, 2005]. Circles

indicate the parts of the partial-order plan that remain after the tree is removed.... 65

Figure 3.5 Two flow diagrams depicting two forms of domain-independent plan

adaptation. On the left is adaptation as performed by [van der Krogt & de Weerdt,

2005]. On the right is adaptation as performed by [Kuchibatla & Munoz-Avila,

2006]. In this figure, UCP stands for any classical, generative planner.................. 66

Figure 4.1 Pseudo-code of HPOP ... 77

Figure 4.2 Pseudo-code of DCPOP ... 91

Figure 5.1 The syntax of a HIEPPR-POP method. ... 110

Figure 5.2 Pseudo-code of HIEPPR-POP ... 118

Figure 5.3 Sample methods in Blocks World ... 121

www.manaraa.com

xii

Figure 5.4 Syntax for defining methods in UMCP ... 123

Figure 6.1 POP rules partially encoding the unstack-stack strategy 131

Figure 6.2 Adaptation times for blocks world (left) and logistics (right) 135

Figure 6.3 Two HIEPPR-POP Methods Encoding Unstack-Stack 138

Figure 6.4 Blocks World Time Comparison (log scale) ... 138

Figure 6.5 Logistics Time Comparison (log scale) ... 140

Figure 6.6 Schedule Time Comparison (log scale) ... 141

www.manaraa.com

1

Abstract

Automated plan synthesis, or “generative planning”, is a process whereby a course of

action – a plan – is generated to achieve some desired goals. When the planning process

uses a previously formulated plan as a starting point for solving a new problem, the

process is called “plan adaptation”. Over the years there has been a significant research

effort on plan adaptation. Part of the reason for this continuing interest in plan adaptation

is attributable to studies indicating a wide range of potential applications, which include

military planning, computer gaming, narrative computing, manufacturing, route planning,

and medicine. Despite this remarkable body of research, existing plan adaptation

algorithms do not scale well with problem size; even on medium-size problems, the

performance of plan adaptation tends to be rather poor. Furthermore, for some worst-case

situations it has been proven that the computational complexity of plan adaptation can be

greater than that of generative planning. Although these worst-case scenarios have been

shown to be inapplicable to most existing adaptation algorithms, it is nevertheless a fact

that the lack of scalability of plan adaptation techniques is a major hurdle preventing their

use in real-world applications.

 The main goal of this dissertation is to address the problem of how to efficiently

represent and apply high-quality, hand-crafted plan refinement and plan adaptation

knowledge. To accomplish this goal I studied domain-configurable plan adaptation, the

results of which are presented in this dissertation. This new problem-solving paradigm

uses domain-specific knowledge about plan adaptation to guide a domain-independent

www.manaraa.com

2

plan adaptation algorithm. This new technique is novel in that existing approaches for

plan adaptation modify the input plan by either using domain-independent plan

adaptation knowledge in a domain-independent adaptation algorithm or domain-specific

plan adaptation knowledge in a domain-specific adaptation algorithm. By focusing on the

use of hand-crafted expert partial-order planning control knowledge and its

representation, one most notably eases the burden of knowledge acquisition – that is one

does not need a complete knowledge base in order to create good plans. This permits the

knowledge engineer to focus on encoding strategies most relevant to solving the

problems, while leaving the more mundane and human-difficult chores of “plan

bookkeeping” to the underlying planner.

www.manaraa.com

3

1 Introduction

Automated planning has been one of the central topics of Artificial Intelligence (AI)

since the inception of the field. One reason for planning’s long incumbency is the desire

of AI researchers to create systems, or agents, that behave rationally to achieve a desired

outcome. It seems reasonable to assume that a key element of rational behavior is acting

with deliberated purpose [Wolldridge, 2002].

1.1 Overview of “Planning” and key open challenges

Planning, or automated plan synthesis, therefore represents the reasoning side of

taking actions that a rational agent might pursue [Ghallab et al., 2004]. This reasoning

involves the selection and ordering of actions based upon their predicted outcomes in

order to achieve a pre-stated goal. The purpose of planning is to, given a formal

description of the initial and goal states of the world, along with a set of rules for how the

world can be systematically altered, generate a plan that specifies how the rules can be

applied to transform the initial state into the goal state. Such cognitive behavior is the

foundation for critical applications such as: efficient scheduling of industrial equipment,

airport traffic control, web service composition, expert-level automated game players,

scientific workflow planning, narrative computing (e.g. create a story to help solicit

medical information from a sick patient), space exploration (e.g. controlling the mars-

lander), and emergency evacuation planning.

While there are a wide variety of subfields within the broad topic of planning, this

dissertation focuses on the class of problems called “classical planning” (STRIPS-

www.manaraa.com

4

family). Classical planning, in the context of AI, is a symbolic approach to problem

solving first developed at Stanford Research Institute (the “STRI” in STRIPS) in 1971,

and is further described in Section 3.1 of this document. Other classes of planning, such

as path and motion planning, perception planning, navigation planning, manipulation

planning, and communication planning are outside of the scope of this dissertation.

In spite of its long incumbency within AI and the breadth of application domains in

which fielded automated planners can be found, there are several dimensions along which

the state of the art in classical planning has enjoyed only limited success. Notably,

modern planners continue to seek advances in four important areas, summarized in Table

1.1: (1) the repair or adaptation of previously formed plans, (2) the generation of plans

for very large problems, (3) the generation of flexible plans, which are less constrained

about the order in which the actions are executed, and (4) the efficient representation and

reuse of hand-crafted expert domain knowledge and preferences.

While successes have been achieved within and across each of these dimensions, no

single framework exists that is capable of addressing all four dimensions simultaneously.

Specifically, how to solve the lack of scalability of plan adaptation techniques remains an

open question, and is a major hurdle preventing its use in real-world applications. The

focus of the research presented in this dissertation is the design and analysis of an

automated adaptive planning technique that can succeed in all four of these areas, thereby

advancing the state of the art in planning. The key technique, which I call HIEPPR-POP

– for HIErarchical Partial Plan Refinements for Partial Order Plans (pronounced "hyper

pop") – is a new way of representing and using expert “control-knowledge” to guide a

planner in its solution generation process. This new control-knowledge can be used to

www.manaraa.com

5

both solve problems from scratch, and from previous solutions. Furthermore, to ease the

notoriously difficult knowledge acquisition problem, the extra knowledge does not have

to be complete, which is an uncommon quality for hierarchical approaches. It is in this 4
th

dimension that I believe HIEPPR-POP makes its most substantial contribution. Each of

the dimensions is expanded upon below.

Dimension 1, Adaptation: The first dimension of difficulty for planners is that of the

repair or adaptation of previously formed plans. Plan adaptation, as the name implies,

extends the generative planning process to include making changes to a pre-existing plan;

that is, plan adaptation is the process by which an old solution is modified to solve a new

planning problem. These changes include the retraction and modification of past

decisions made about actions and their ordering, as well as possibly adding new actions.

One classic, motivating example is making changes to a cooking recipe to accommodate

a slight variation of available ingredients. So, if margarine is on hand instead of butter it

would seem natural, faster, and easier to simply substitute one for the other, rather than

re-creating the whole recipe from scratch. Because recipes are sequences of steps, they

can be seen as plans. Creating the recipe from scratch can be loosely taken as generative

planning whereas modifying an existing recipe for a new problem can be taken as plan

Dimension Definition Example

Plan adaptation the repair or adaptation of previously formed

plans (solve new problems by reusing solutions)

Prodigy

/Analogy

Problem size the generation of plans for very large problems

(those with many goals)

SHOP2

Flexible

solutions

the generation of flexible plans (solutions with

fewer constraints on action ordering)

VHPOP

Expert

knowledge

the efficient representation and reuse of expert

domain knowledge and preferences

TLPLAN

Table 1.1 Dimensions of difficulty for modern planning approaches

www.manaraa.com

6

adaptation. Historically, plan adaptation is a subfield that has been slow to see progress

and realized successes [Greene et al., 2008], and is an area in which the HIEPPR-POP

technique is poised to make a substantial contribution. Section 3.8 summarizes different

approaches to plan adaptation.

Over the years there has been a significant research effort on this problem-solving

technique. Works include complexity analysis for worst case scenarios [Nebel &

Koehler, 1995], search-space analysis [Au et al., 2002; van der Krogt & de Weerdt, 2005;

Kuchibatla & Munoz-Avila, 2006], plan merging [Veloso, 1994; Munoz & Weberskirch,

1997; Ram & Francis., 1996; Tonidandel & Rillo, 2005] and plan adaptation algorithms

for several planning paradigms including total-order planning [Veloso, 1994], partial-

order planning [Ihrig & Kambhampati, 1997; Munoz-Avila & Weberskirch, 1996], HTN

planning [Kambhampati, 1994; Warfield et al., 2007], planning graphs [Gereveni &

Serenia, 2000], and heuristic planning [van der Krogt & de Weerdt, 2005]. Part of the

reason for this continuing interest in plan adaptation is attributable to studies indicating

potential applications, which include military planning [Mitchell, 1997; Veloso et al.,

1997; Munoz-Avila et al., 1999], computer gaming [Ontañón et al., 2007; Sanchez et al.,

2007], manufacturing [Costas & Kashyan, 1993; Munoz-Avila & Weberskirch, 1996;

Veerakamolmal & Gupta, 2002], route planning [Haigh et al., 1997], and medicine

[Schmidt et al., 2001, 2003; Salem et al., 2003].

Despite this remarkable body of research, existing plan adaptation algorithms do not

scale well with problem size. Even on medium-size problems, the performance of plan

adaptation tends to be rather poor. Furthermore, for some worst-case situations it has

been proven that the computational complexity of plan adaptation can be greater than that

www.manaraa.com

7

of first-principles planning [Nebel & Koehler, 1995]. First-principles planning, also

called STRIPS planning [Fikes & Nilsson, 1971], solves new problems by reasoning on

the given action schemas to generate the plans from scratch. Although these worst-case

scenarios have been shown to be inapplicable to most existing adaptation algorithms [Au

et al., 2002; Kuchibatla & Munoz-Avila, 2006], it is nevertheless a fact that the lack of

scalability of plan adaptation techniques is a major hurdle preventing their use in real-

world applications. This lack of scalability makes it difficult to consider dropping

classical planning assumptions about temporal constraints and non-determinism in the

outcome of the actions. While the work presented herein does not address planning with

non-determinism and temporal constraints, it takes the important first step of even

making this a consideration for problems of the proposed size. The classical planning

problem, and hence the classical adaptation problem, assumes that action execution is

instantaneous, and that the effects of actions are pre-determined. But in many real-world

applications, planning software is needed that can reason with time constraints, and

where the outcome of the actions is not pre-determined [Ghallab et al., 2004]. Although

planners have been developed capable of dropping these assumptions [e.g., Bacchus &

Ady, 2001; Vidal & Geffner, 2006; Onder et al., 2006], no plan adaptation algorithm

exists capable of dealing with these issues.

Dimension 2, Problem Size: The second dimension of difficulty for planners is that of

solving very large problems. The size of a planning problem is related to the number of

objects in the problem’s initial state and how many goals are to be achieved (problem

difficulty increases as the size of the initial and goal states grows). The ability of a

planner to solve large problems is the deciding factor for its application to the real-world;

www.manaraa.com

8

a planner is not very useful in practice if it can only solve small, “toy” problems. It is for

this reason that few domain-independent planners are successfully fielded, and instead

why domain-configurable or domain-specific planners dominate industrial applications

and planning competitions. Section 3.5 summarizes the differences between these

approaches. For the purposes of this introduction, it is sufficient to say that the approach

presented in this dissertation is a domain-configurable one, given its historical success

with large problems.

Dimension 3, Solution Flexibility: The third dimension of difficulty is that of

generating flexible plans. A plan is considered flexible (during plan execution) when the

sequence of actions representing the problem’s solution has a low degree of ordering

constraints. That is, the more constraints on the ordering of actions in a planning solution,

the more tightly constrained and less flexible the solution plan is for execution; the fewer

the constraints on action ordering, the greater the plan’s flexibility. Take for example a

plan that has a totally-ordered sequence of steps. This total-ordering means that only one

step can be executed at a time. Should any one of those totally ordered steps fail during

the plan’s execution, the remainder of the plan cannot be carried out, and nothing can be

done until a new action sequence is generated. In contrast, a plan that only has a partial-

ordering on its steps is more tolerant to failure; should one of the steps fail, there may be

other steps that can consistently (relative to the ordering constraints) be executed. This

flexibility is desirable not only because it allows more time to deliberate over a failure

(given that other steps can be executed while the problem is repaired), but also because

there are many domains in which parallel action execution is desirable even in the

absence of failure.

www.manaraa.com

9

A simple example of a domain where it is desirable to have actions that can occur

simultaneously is that of package delivery. With multiple packages to be delivered to

various destinations by multiple vehicles, it is absurd to imagine that each package must

be handled one-at-a-time; rather, each vehicle can and should be simultaneously

delivering its payload of packages to their destinations. It is for the reason of execution

flexibility that the approach presented in this dissertation is built upon a “partial-order

plan” representation. Section 3.2 summarizes the differences between partial-order and

total-order representations, and how they relate to the planner’s search space. It is notable

that planners that generate partially-ordered action sequences often do so at the expense

of their ability to solve large problems, and therefore the design and analysis of a

technique that can succeed in the second and third dimensions of planning difficulty is a

compelling scientific goal.

Dimension 4, Expert Knowledge: The fourth and final dimension of difficulty for

planners is the efficient representation and reuse of expert domain knowledge and

preferences. In many real-world planning domains, there exists a corpus of knowledge

about how certain types of problems in those domains are solved, and preferences about

solution action sequences that are related to standard operating procedures. For example,

an expert in emergency evacuation planning may know that for groups of fewer than four

people a helicopter is the best vehicle option, even though other viable means of transport

are available. If a planner cannot represent and reuse this knowledge, then the solutions it

generates are likely of a lower quality than hand-crafted solutions; furthermore, the

planner must spend time searching for solutions that will be immediately rejected. This is

another strong motivation for my technique being a domain-configurable one. However,

www.manaraa.com

10

in designing systems that can reason with this extra knowledge, one introduces a

“knowledge-engineering bottleneck” that can make the planner too difficult to use (as

acquiring useful knowledge can be too burdensome). Therefore one of the highest-

priority design constraints of the technique presented in this dissertation was to support

the efficient representation and reuse of this extra planning knowledge. While this design

constraint is not new, the approach presented herein is novel in that expert knowledge

does not have to be “complete” – that is the planner can find solutions that use as little or

as much knowledge as can be obtained.

1.2 Contributions of This Work

The following is a summary of the scientific contributions of this dissertation to the state-

of-the-art in planning research:

 Ability to make partial-order plans for large problems. Algorithms that use

a partial-order plan representation historically cannot generate plans for problems

with many goals, which require many actions to solve the problem. I show that in

some situations, the HIEPPR-POP algorithm can do so. This is notable in that

partial-order solutions can be far more flexible in their execution than totally-order

solutions, and also partial-order plans are believed to be a better approach for

supporting actions with duration (a condition that exists in many real-world

planning problems).

 Fast, generative domain-configurable partial-order planning. The main goal

of this research was to study scalable (with respect to problem size) and well-

founded plan adaptation. However, along the way to achieve this goal the study

www.manaraa.com

11

included generative domain-configurable partial-order planning. This yielded a

new planning algorithm that scales well with problem size, outperforming existing

domain-independent partial-order generative planning algorithms in terms of time

taken to find a solution (while sacrificing solution quality as measured by plan-

length).

 Well-founded plan adaptation. HIEPPR-POP has clear semantics specifying

the conditions under which soundness (i.e., under which conditions are plans

generated guaranteed to be correct) and completeness (i.e., under which conditions

are plans guaranteed to be generated when a solvable problem is given) can be

guaranteed.

 The ability to generate adaptation solutions using incomplete adaptation

knowledge. HIEPPR-POP is a domain-configurable adaptation approach that does

not require complete adaptation knowledge to generate a solution (because at all

times it is refining a partial-order plan, this partial plan can be completed by first-

principles whenever there are gaps in the encoded domain-configurable

knowledge). This is somewhat novel in modern planning research and eases the

knowledge-engineering bottle-neck. A caveat to this contribution is that the ability

to extend incomplete solutions generated by HIEPPR-POP into complete solutions

(having no flaws) is predicated both on the quality of the first-principles planner

used to complete the plans, and the quality of the domain-configurable knowledge

used to produce the incomplete solution. In general, even the best implementations

of partial-order planning techniques have difficulties finding solutions for even

medium-sized problems – therefore, refining incomplete solutions is typically only

www.manaraa.com

12

possible when the first-principles refinements required need no, or little,

backtracking.

 Ability to study the trade-offs between knowledge given and performance

gains. As a result of the previous bullet, it is possible to investigate the trade-offs

between the amount of domain-configurable knowledge given and its result on

planning performance, measured in running time and percentage of actions

retained.

 A testbed for other researchers. HIEPPR-POP is the first adaptive, domain-

configurable partial-order planner freely available for the Case-Based reasoning

and Planning research communities. This enables others to do focused research on

other important areas of plan adaptation, such as the problem of which partial plan

should be used at the start of the adaptation process (retrieval), the problems of

which steps to remove from the plan to adjust and how to adjust the mapping of

objects used in the previous solution with objects in the new problem, without

having to first build or re-implement a successful plan-adaptation technique.

 The capability to retain a significant portion of the plan to be adapted. The

HIEPPR-POP approach should be able to retain a significant portion of the plan

when feasible. The amount retained will necessarily depend upon the input plan,

the conditions of the new problem, and the domain-specific plan adaptation

knowledge provided. This capability is a consequence of the ability of the

algorithm to solve large problems, and the use of a partial-order plan

representation that captures plan commitments at a finer level of granularity than

those used in total-order plan representation (a simple sequence of actions).

www.manaraa.com

13

 No tradeoff between time spent to find a previous solution to adapt, versus

time spent performing adaptation. Under some (highly constrained) conditions,

the HIEPPR-POP approach (specifically, the DCPOP algorithm) was shown to

take roughly the same amount of time to produce a solution to a new problem

through adaptation, regardless of the source plan used to make the solution. This is

counter to the well-established retrieval-adapt tradeoff commonly considered

inescapable in the case-based reasoning literature.

1.3 Dissertation Outline

The remainder of this document proceeds as follows: Chapter 2 informally describes

the dissertation topic, summarizing the technique and steps through a simple example.

Chapter 3 presents background material and research related to the technique presented in

this dissertation. Readers interested in background material related directly to plan

adaptation should refer to Chapter 3.8. Chapter 4 presents the core of the technique, and

is followed in Chapter 5 by useful extensions that increase the power of the approach

while simplifying its use. Next, Chapter 6 shows the results of an empirical evaluation.

The dissertation closes with a section offering conclusions and future directions to

explore (Chapter 7).

www.manaraa.com

14

2 Overview of Dissertation

The main goal of this dissertation is to address the problem of using high-quality, but

incomplete, expert planning knowledge in a manner that allows for scalable planning that

includes adaptation, and to do so in a way that allows for flexible plan execution.

That is, imagine a problem that is solvable by planning. Some examples of “planning

problems” are stacking blocks, sequencing moves in the card game Freecell, scheduling

the transportation logistics for delivering packages – anything that involves coming up

with a sequence of actions to achieve a desired outcome. Suppose also there is some

expert knowledge about how to best solve this problem, or a preference about how

problems in that “domain” should be solved. For example, in the transportation logistics

domain, an expert might say a nearby truck should always pick up a package that is not

yet at its final destination. This dissertation presents a theory on how to represent and use

this hand-crafted expert knowledge in a new way. The main questions this dissertation

addresses are:

(1) Representation: how to express this hand-crafted expert knowledge or preference

for solution approaches? What constraints does the chosen representation place

on the flexibility of solutions created by using this expert knowledge?

(2) Reuse: how to use this knowledge to solve other problems in the same problem

domain? Is there a way that this knowledge can be used to both solve problems

from scratch, and solve problems by reusing other solutions? Does the

application of expert knowledge lead to “better” plans?

www.manaraa.com

15

(3) Scalability: How does the use of this knowledge affect the speed of finding a

solution? What is the relationship between the amount of expert knowledge,

and the size of the problems solvable by the approach?

(4) Scarcity: can the new automated problem solving theory work with as little or as

much expert knowledge as is available?

(5) Domain-independence: can the same representation and mechanism of reasoning

be used across different problem domains? What types of problems are

solvable with this approach?

The broad title of this dissertation is “Hierarchical Planning Knowledge for Refining

Partial-Order Plans”. The solution presented achieves this goal in a systematic way that

facilitates future extensions to drop classical assumptions, such as instantaneous action

execution and deterministic outcome of actions. To date, there exists no domain-

independent plan adaptation algorithm capable of dealing with the combined issues of

making flexible planning solutions to very large problems by using expert knowledge that

can be incompletely specified. To accomplish this goal I designed and investigated a new

domain-configurable plan adaptation algorithm. This new problem-solving paradigm uses

domain-specific knowledge about planning to guide a domain-independent planning

algorithm. Existing approaches for plan adaptation modify the input plan by either using

domain-independent plan adaptation knowledge in a domain-independent adaptation

algorithm (e.g., [Hanks & Weld, 1995; van der Krogt & Weerdt, 2005; Tonidandel &

Rillo, 2005; Kuchibatla & Munoz-Avila, 2006]) or domain-specific plan adaptation

knowledge in a domain-specific adaptation algorithm (e.g., [Hammond, 1986; Fagan &

Cunningham, 2003; Corchado et al., 2007]).

www.manaraa.com

16

2.1 Plan Adaptation – The “Grand” Challenge

Despite the successes reported above, existing adaptation procedures are still far from

solving what can be called the original plan adaptation challenge. The challenge can be

stated as follows: how to perform plan adaptation when there is implicit knowledge in the

source plans and, hence, the adaptation process must carefully modify the source plan to

preserve such knowledge. The source plans describe high quality procedures and

carefully crafted adaptation rules prescribe how these plans can be modified to preserve

the quality of the source plans. This problem remains a challenge due to the knowledge

engineering bottleneck: encoding complete plan adaptation knowledge information in a

formal language is unfeasible because of the time it would require to encode such

knowledge and because, even if domain experts where to be made available, some of the

actual processes followed by the expert are not explicit as the experts are guided by

experience rather than a well understood problem solving theory.

A notable approach to solving the plan adaptation with quality measures challenge is

the PbR system [Ambite et al., 2005]. Although it is not adapting a solution relative to a

new problem, PbR uses rules to modify an existing solution plan into another solution for

the same problem but one that has better quality. Unlike the Fox et al. (2006) system,

PbR does not need to explicitly represent the plan quality measurements because these

are implicitly encoded in the rules, which are carefully crafted by a domain expert. So

this system falls in the category of domain-configurable planners; systems in which

domain-specific knowledge containers are provided to guide a domain-independent plan

generation process. In addition to the term rewriting rules in PbR, other formalisms

proposed to represent the domain-specific knowledge includes hierarchical task networks

www.manaraa.com

17

[Nau et al., 1999; 2005], temporal logic planning [Bacchus & Kabanza, 2000;

Kvarnström, & Doherty, 2001; Kvarnström & Magnusson, 2003], and domain-

configurable rules [Lee-Urban & Munoz-Avila, 2009]. Regardless of the particular

representation formalism, the main drawback of such systems is the potentially large

knowledge engineering effort required to encode the domain-specific knowledge.

Nevertheless, the approach presented in this dissertation assumes as input the adaptation

knowledge. To ease the burden of the knowledge engineering effort, a quality of the

adaptation knowledge I seek to use is that it can be incomplete.

The original plan adaptation challenge remains important today. In many real-world

domains, carefully crafted plans with implicit quality guarantees are available.

Generating plans from scratch with similar qualitative or safety guarantees is not a

realistic option. Instead, procedures are needed that adapt these plans to new situations

while preserving their quality or safety guarantees. An example is military planning,

where rather than explicit measures, semantic categorizations can be used to examine

how plans relate to one another [Myers, 2006]; military plans that appear syntactically

different in regards to the actions they involve might actually be semantically similar

because they execute the same strategy (e.g., a pincer maneuver). Domains where the

existence of such plans has been documented include forest fire management [Avesani, et

al., 1993], and medicine [Miksch, 1999; Schmidt et al., 2001, 2003; Salem et al., 2003].

Clinical protocols indicate how to treat a patient with a specific disease. Generally, there

is no need for generating new treatments from scratch; rather a large number of treatment

protocols have already been acquired. This is the result of a concerted effort by the health

care community to improve quality assurance by reducing variance in clinical practice

www.manaraa.com

18

(Miksch, 1999). The challenge is to adapt these existing treatments to the specific

circumstances of the patient. Another example is Emergency Crisis Plans [US Dept. Edu.,

2009]. Such plans have been created, or are in the process of being created at every level

of our society from small elementary schools to large cities. These plans are pre-

conceived activities indicating what individuals or sub organizations must do in case of

an emergency and frequently are the result of careful inter-agency negotiations. Hence,

sensible modification of these plans to adapt to the changing circumstances is crucial.

2.2 A Motivating Example

In this section, a simple example is given that motivates the problem, and gives insights

about the research presented in this dissertation. The purpose is to impart to the reader at

a high-level the problem addressed, and a sense of the solution presented. Without such

an example, much of the next chapter will lack motivating context. To ground the

explanation, I take up the “transportation logistics” example hinted at in the beginning of

this chapter. This “domain” is like one that FedEx might use for its business needs –

delivering packages from their starting locations to their final destinations.

The example proceeds as follows: first, the general problem of planning is restated.

Next, the transportation logistics problem “domain” is explained. Subsequently a means

of symbolically representing entities in the world, and relationships between them, is

presented. This representation is then used to define, by specifying “initial” and “goal”

states, a single problem within the transportation logistics domain. After that, a means of

representing actions that can be taken in the domain is provided. Having specified how to

represent states and actions, the example moves to a discussion of how they can be used

www.manaraa.com

19

to make solutions to the example problem, differentiating between “state-space” and

“plan-space” search. The example concludes with a discussion of how “expert

knowledge” can be used in the solution generation process.

Restating the planning problem: Automated planning is a methodology for creating

action sequences. An action sequence is simply a set of steps that when followed in a

particular order, transforms the “state” from its initial configuration to a goal

configuration. In imprecise terms, a “state” is a symbolic (uses an alphabet and words)

representation of what is true in the world (problem at hand). An “action” is akin to a

verb in human language– it denotes something that changes what is true in the world.

States and actions are inherently tied to the problem area in which a solution is sought.

This problem area is referred to as the “domain”, which is synonymous with “planning

domain” and “problem domain”. A “problem” in any planning domain is characterized

by the initial and goal states, and the actions available for sequencing. How does the

transportation logistics domain define actions and states?

The transportation logistics problem domain: In transportation logistics, there is the

notion of the following real-world entities: packages, trucks, airplanes, cities, and

locations. A package can be in a truck, in a plane, or at a location. All locations are

contained within cities; trucks can move between any locations within a city; airplanes

can move between the airports in each city.

Representing the state: Symbolically the real-world entities can be represented as

follows. Suppose there is a package called p-1, a truck called t-1, a city called

Bethlehem, and two locations within that city, the location LehighU and the location

LVI, which is an airport. The corresponding symbolic representations of these entities

www.manaraa.com

20

could be: (package p-1), (truck t-1), (city Bethlehem), (location

LehighU), (location LVI), and (airport LVI). The parentheses are used to

group items. Within a grouping, by “pre-fix” convention, the first word indicates the type

of entity, and the second word (sometimes referred to as “argument”) indicates the

instance of that entity. In general however, what comes within the parentheses can take

many forms, and is not limited to any particular order or number of arguments, so long as

the representation is well-defined. For example, there are many cities, but representing

them symbolically will take the form (city ?x), where ?x is a particular city name.

Each unique entity must have a unique representation.

Having represented the entities, it is clear that the relationships between them are

missing. For example, how is the fact that Lehigh University is located in Bethlehem

captured? One way to do so would be: (in-city LehighU Bethlehem), (in-

city LVI Bethlehem). A similar approach can be used to represent “world state”

configurations. For example, to assert that the package p-1 is currently at the airport

LVI, one could write (at p-1 LVI). To state that the truck in this problem is located

at LVI, one could write (at t-1 LVI).

Initial State Goal State

(package p-1)
(truck t-1)
(city Bethlehem)
(location LehighU)
(location LVI)
(airport LVI)
(in-city LehighU Bethlehem)
(in-city LVI Bethlehem)
(at p-1 LVI)
(at t-1 LVI)

(at p-1 LehighU)

Figure 2.1 Example initial and goal state in transportation logistics domain

www.manaraa.com

21

There is now enough syntax to specify the beginning of a planning problem. A

problem is partially defined by its initial and goal states, each of which is a set of

symbolic facts. An example problem in this domain is shown in Figure 2.1. It describes a

starting configuration of a single package that starts at LVI airport and needs to be

delivered to Lehigh University. Note that because the final location of the package is the

only requirement of this problem, only this fact need be specified in the goal state.

Available in this problem is a single truck, and a single airplane. How can the planning

problem be solved? Without any actions available, no sequencing can be made! A

planning problem therefore also takes in a representation of actions that can be taken in

the problem domain.

Representing the actions: The notion of actions in planning builds upon the syntax

used to represent world state. In this planning domain, some of the real-world actions

relevant to solving the problem include loading and unloading a truck, and driving

between locations. Whatever representation is used for actions must capture the

relationship of that action to the symbolic world state. Specifically, anything that can be

done to effect change in the real-world has constraints, and this must be modeled in the

representation of actions– certain things must be true in order to take an action, and after

taking an action certain effects are realized in the world. For example, it is impossible to

load a package into a truck if the truck and package are not in the same location; it is

impossible to unload a package that is not in a truck; unloading a package removes it

from the truck and “delivers” it to the location at which the truck was when the unload

action was performed. The means of representing world state is reused in this situation to

express preconditions (things that must be true for an action to be usable) and effects (the

www.manaraa.com

22

things that are made true, or untrue) of actions. An example of the load, unload, and drive

“operators” are shown in Figure 2.2. The difference between an action and an operator

will be explained shortly.

Load and Unload operators Drive operator

(name: load-truck
 parameters: ?t ?p ?loc
 preconditions:
 (truck ?t)(package ?p)
 (at ?t ?loc)
 (at ?p ?loc)

 effects:
 (in-truck ?p ?t)
 (not (at ?p ?loc))
)

(name: unload-truck
 parameters: ?t ?p ?loc
 preconditions:
 (truck ?t)(package ?p)
 (at ?t ?loc)
 (in-truck ?p ?t)
 effects:
 (not (in-truck ?p ?t))
 (at ?p ?loc)

)

(name: drive
 parameters: ?t ?from ?to
 preconditions:
 (truck ?t)
 (location ?from)
 (location ?to)

 (same-city ?from ?to)
 (at ?t ?from)
 (at ?p ?loc)
 effects:
 (in-truck ?p ?t)
 (not (at ?p ?loc))
)

Figure 2.2 Three actions in the transportation logistics domain

In Figure 2.2, the symbolic representation of facts has been extended to include

“variables”, which are those elements preceded by a question mark. Without variables,

the specification of actions would be tedious – for every object (each truck, each package,

and so on) in the domain, a single action would be required. By adding variables, actions

are turned into operators. This has the benefit of vastly simplifying the encoding of

permissible actions, while incurring the small inconvenience of having to check the

validity of what is “bound” to the variable (for example, it must be verified that ?t is a

particular truck such as t-1).

www.manaraa.com

23

The operator load-truck requires that the truck and package be at the same

location, indicated by the two at preconditions sharing the same location ?loc. When

this operator is valid, meaning its preconditions are met, it can be “applied” to a world

state, causing a transformation. Application of the load action transforms the state by

adding the fact that the package is in the truck, (in-truck ?p ?t), and removing

the fact that the package is at ?loc. For example, if the world state indicates that

truck-1 is a truck and p-1 is a package, and furthermore that they are at the same

location LVI “(at t-1 LVI)(at p-1 LVI)”, then the resulting world state from

applying the action is “(in-truck p-1 t-1)” with the “at” pertaining to the

package removed.

Solving a planning problem: Now armed with a means of representing facts about the

world, and a means of representing actions that transform this state, it is possible to make

a solution to the planning problem. Recall that a solution is a sequencing of actions that

transform the initial state into the goal state. For this small example, the initial and goal

states are as specified in Figure 2.1, and the operators are those defined in Figure 2.2.

But where should the search process begin? It is possible to begin from the specified

initial state, try each action that has its preconditions met, advance the world state one

action at a time, and cease the search process when a world state is reached that is

consistent with the goal state (that is, a state containing all facts specified, and potentially

others not relevant to the solution). Similarly, one can “work backwards” from the goal

state by adding an action that adds facts needed in the goal state, and continue to regress

the state backwards until a state consistent with the initial state is reached. Both the

forward and backward “state-space” approaches can create valid solution sequencing of

www.manaraa.com

24

actions, and indeed can even be used simultaneously, but they do a lot of blind and

“fruitless” searching because of needlessly committing to a totally ordered sequence of

actions before there is justification to commit to that order (that is, in the forward and

backward state-space search, each action has one and only one “correct” place in the

generated solution; even two steps that could in theory happen before one another, or

simultaneously, would be needlessly committed to a particular order). The benefit of

these two approaches is one always has an explicit notion of “world state” – that is the set

of facts that are true before and after applying each action is known. However, not only is

there much wasted effort, but this total ordering goes against the aim of creating solutions

that commit to an ordering only in as much as that ordering is necessary for correctness.

At this point, the motivation for a “partial ordering” of actions is clear. By moving the

search process from the “state space” to the “plan space”, researchers in the field of

automated planning opened the possibility of creating flexible solutions. This partial-

order approach is also referred to as “least-commitment” planning because constraints are

added only when they are absolutely necessary for correctness.

Partial-order planning begins by first adding all actions that have as effects those facts

needed in the goal state. These actions are only ordered relative to one another if an

incorrect solution would be generated without this ordering. The process is then

continued by asserting actions that achieve the unsupported preconditions of actions

already added to the plan, and ordering them to preserve correctness. The search process

is complete when all facts required in the goal state are supported, and the precondition of

every action added to the “partially ordered plan” is supported by the effect of another

action or the initial state.

www.manaraa.com

25

At this point, the search process has produced a set of steps, and a partial ordering

across them (for example, two steps that can occur simultaneously will not have an

ordering relationship between them). Any sequencing of those steps that respects the

ordering across them is guaranteed to be a valid solution to the planning problem. What

follows in Table 2.1 is a trace of how the partial order process would proceed given the

initial and goal states specified in Figure 2.1, and the operators defined in Figure 2.2.

For clarity, sometimes multiple steps in the process are collapsed into a single step, and

also not all details are shown. Furthermore, an explanation of the notation used is

omitted, instead relying upon an informal description of each step in the process. Full

details of the process, and its notation, are presented in Section 3.2.2. The intent here is to

give a “feel” for the underlying planning approach, and the type of knowledge I sought to

represent and use with the technique created for and defended in this dissertation. A

careful explanation is in Chapter 4.

Partial planning process Explanation

Steps:
 S0
 SGoal
Ordering:
 S0 < SGoal
Links:
Flaws:
 (at p-1 LehighU)@SGoal

Add special start and end steps, and

an ordering constraint between them.

The start step has as effect all facts

of the initial state; the goal step has

as precondition all facts specified in

the goal state. All steps that are

added have an implicit ordering

constraint forcing it to come between

the initial and goal steps.
Add step:

 Su: (unload p-1 t-1 LehighU)
Add link:

 Su (at p-1 LehighU)@SGoal

Add order:
 S0 < Su
 Su < SGoal

Add a step that unloads p-1 from t-1

at LehighU. Keep track of the

contribution of the step by “linking”

it with the precondition of the goal

step, and removing the associated

flaw. Ensure order consistency by

making step Su come between the

initial and goal steps.

www.manaraa.com

26

Flaws:

 (at t-1 LehighU)@Su
 (in-truck p-1 t-1)@Su

The new step has preconditions that

need to be supported. Two important

ones are shown, the rest omitted for

clarity
Add step:
 Sd: (drive t-1 LVI LehighU)
Add links:

 Sd (at t-1 LehighU)@Su

 S0 (at t-1 LVI)@Sd

Add order:
 Sd < Su

Add a step that drives t-1 to

LehighU, and link its effects with the

preconditions that need support.

Note that if there were many

locations, it is completely valid to

drive the truck from a different

location. An “omniscient” choice

was made to use the location at

which the truck began.
Flaws:
 (in-truck p-1 t-1)@Su

The “at” precondition of the unload

is removed from flaws; note again

that had we not supported the at of

Sd using the initial state, we would

have to add this as a flaw.
Add step:
 Sl: (load p-1 t-1 LVI)
Add links:

 S0 (at t-1 LVI)@Sl

 S0 (at p-1 LVI)@Sl

 Sl (in-truck p-1 t-1)@Su

Add order:

 Sl < Sd

Add a step that loads p-1 into t-1 at

LVI, and use its effects to support

Su. Again, for clarity links

supporting Sl from the initial state

were added, but these preconditions

could have been supported by adding

another step (note that this makes the

search space infinite). Constrain Sl

to come before Sd.
Final partial-order plan:
Steps:
 S0, SGoal, Su, Sd, Sl
Links: (those shown above)
Ordering:
 S0 < SGoal, Sd < Su, Sl < Sd

The process is complete, because all

preconditions are supported, and any

sequence consistent with the

ordering will transform the initial

state into the goal state. While in this

case, this produces a total order, one

can see that with two trucks and two

packages, one will likely exploit the

partial-order.

Table 2.1 A trace of a plan-space search process for the transportation logistics domain

Use of expert knowledge: So far, however, the process shown in Table 2.1 has no way

to take in to account expert knowledge or preferences on how to find a “good” solution.

For instance, when the load step was added, the planner faced two choices on how to

support the precondition that the truck t-1 be at location LVI: use the “at” fact listed in

www.manaraa.com

27

the initial state, or add a new action with an effect that supports the precondition. Being

an omniscient human (relative to this tiny problem), I chose to use the fact from the

initial state, as it would make the example shorter. But how would a planner know to do

so? It is precisely this sort of expert knowledge or search preference that the approach

presented in this dissertation addresses. To represent this knowledge, the HIEPPR-POP

approach presented in this dissertation would express a refinement rule like the

following:

If there is a step Sx that requires a truck be at a certain location

And if there is another step Sy that can come before Sx, and provides this fact

Then use the effect of Sy to support Sx

Figure 2.3 Example rule to express the expert knowledge used in Table 2.1

It is also worth noting that, while the example in Table 2.1 started from “scratch” (that

is, an initial plan containing only the “special” start end goal steps), the HIEPPR-POP

approach can start from a previous solution (that is, start with a plan that contains steps,

ordering constraints, and links pertaining to a similar problem).

2.3 Research Challenges

The work presented in this dissertation is motivated by existing research in domain-

configurable planning. In this related form of planning, domain-specific knowledge

enhancing the action schemas is given. This knowledge is used to guide the planning

process, which like first-principles planning generates a plan from scratch. Domain-

configurable planners have been shown to solve problems more quickly and to scale

much better with problem size than first-principles planners, as reported in Section 3.5.

There are four challenges that need to be addressed to make domain-configurable plan

adaptation feasible. First, is the need to define a representation formalism capable of

www.manaraa.com

28

encoding domain-specific plan adaptation knowledge. The representation formalism must

be flexible enough to be able to represent the various kinds of transformations that may

occur in a plan while having clear syntax and semantics. Furthermore, the representation

must allow for rapid plan reuse. There are a number of representation formalisms that

have been used successfully for speed-up control including macro-operators (i.e., [Botea

et al., 2005]), hierarchical task network methods [Hogg et al., 2007; Koening et al., 2005;

Nau et al., 2001], temporal rules based on first-order logic (i.e., [Baccus & Kabanza,

2001] and [Kvarnström & Magnusson, 2003]) and domain-configurable rules [Lee-Urban

& Munoz-Avila, 2009]. One important aspect of this challenge is that the representation

formalism will fix, or at the very least restrict, the plan generation paradigm on which the

plan adaptation will be based. For example, the structure of the macro-operators in Botea

et al. (2005) ties it to a total-order planner because these operators modify the current

state as maintained by such planners. It is interesting to observe that aside from domain-

specific plan adaptation algorithms such as CHEF [Hammond, 1986], most domain-

independent plan adaptation algorithms do not represent adaptation knowledge explicitly

because, as explained before, the expansion of the baseline plan is done by the first

principles planner. Exceptions such as the PbR [Ambite and Knoblock, 2005; 2001] and

DCPOP [Lee-Urban & Munoz-Avila, 2009] fall in the category of domain-configurable

planners that combine encoding of domain-specific knowledge in a domain-independent

setting [Wilkins & desJardins, 2001].

The second challenge is to develop an adaptation algorithm that correctly interprets and

efficiently executes the knowledge encoded in these expressions in a way that preserves

quality guarantees that are implicitly encoded in the source plans but that may not be

www.manaraa.com

29

explicitly encoded into the knowledge base used for plan generation/adaptation.

Generation of plans that take into account some explicit measure of quality has long been

observed to be an important consideration during plan generation [Perez & Carbonell,

1994]. For example, planners like Graphplan [Blum and Furst, 1997] ensure that the

length of longest branch of the partial-order representation of the plan generated is the

minimum. Hence, assuming all actions have equal execution time, these plans will result

in the overall shortest length when each branch of the plan is executed in parallel. Other

planners associate costs with each action and take these costs into account to generate

plans of some quality as a function of the costs of actions in the plan (e.g., [Marthi et al.,

2008; Do and Kambhampati, 2002]).

Benchmarking of plan quality has become an important metric in the International

Planning Competition (IPC). A particular challenge arises from the observation that plan

adaptation techniques can be detrimental to plan quality if it is not carefully done. For

example, if the plan adaptation technique attempts to retain as much of the source plan as

possible then it is possible the transformed plans are unnecessarily costly. That is, if the

plan adaptation technique commits to be conservative as defined in Nebel & Koehler

(1995), then it is conceivable that the solution plan obtained for the target problem may

be significantly more costly than one generated from scratch and even much larger that

the source plan.
1
 Interestingly, Fox et al. (2006) defines a notion of plan stability, loosely

related to conservative plan adaptation, that results in solution generation with

comparable plan quality versus first-principles planning. A challenge related to solution

1
 Taking cost considerations aside, generating a solution plan that retains as many steps as possible from

the source plan is computationally harder than planning from scratch (Nebel & Koehler, 1995).

www.manaraa.com

30

quality in my approach is to consider situations in which these quality measures are not

explicit in the domain (i.e., the set of operators) used to generate plans and, instead, the

measures are implicitly encoded in the source plans. For example, Myers (2006) points to

meta-theoretical measures that describe semantic properties of the domain and use these

to identify qualitatively similar plans. For instance, one plan encodes a defensive strategy

whereas another one may encode a flanking maneuver.

The third challenge is to test my research hypothesis that domain-configurable plan

adaptation algorithm with appropriate knowledge is scalable and retains a significant

portion of input plans that are consistent with the conditions of the new problem.

The fourth challenge is to formulate an abstract problem that captures the essence of

domain-configurable plan adaptation and to perform complexity analysis on this abstract

problem. It is likely that the computational complexity of domain-configurable plan

adaptation is greater than that of existing plan adaptation algorithms. This trade-off of

increased scalability at the cost of increased computational complexity is reminiscent of

how first-principles planning compares to HTN planning. Under some conditions the

former can be EXP-SPACE-complete whereas the latter can be undecidable [Ghallab et

al., 2004], which is a precise way to say that HTN planning can be incredibly more

difficult (unsolvable) than planning from first-principles (solvable). However, this does

not mean that the goal of attaining scalable plan adaptation is not attainable. Rather, it

means that appropriate domain-specific knowledge must be encoded in order to realize

performance gains. As an example, the HTN planner SHOP can be shown to be Turing-

complete because it can make calls to external programs to evaluate conditions. Thus, it

is possible to express even undecidable problems in the SHOP planning formalism.

www.manaraa.com

31

However, with the right knowledge encoded into it, SHOP has been shown consistently

to scale well with problem size [Nau et al., 2005], solving problems several orders of

magnitude larger than those solvable by first-principles planners.

The important question of how to learn the plan adaptation knowledge is outside the

scope of this dissertation, but is an excellent avenue of future work that would likely

broaden the impact of my approach.

www.manaraa.com

32

3 Related Work – Planning & Other Approaches

In this chapter I discuss related work and introduce the notation of the basic planning

elements as presented in the literature.

Planning is among the oldest fields of AI and as such has seen a wide variety of

scientific contributions. This section presents a portion of this history in order to better

situate my particular contribution to the field. This is not intended to be a comprehensive

overview of research on planning, but is instead intended to discuss related research as it

pertains to this dissertation (aside from the ones already discussed in previous sections

and pointed discussions in subsequent sections).

3.1 Classical Planning and STRIPS Assumptions

The birth of the field of planning, in the context of AI, was the STRIPS system, short for

Stanford Research Institute Problem Solver in 1971 [Fikes & Nilsson, 1971]. This system

name became synonymous with all “classical” automated planning approaches, referred

to interchangeably as planning from first principles, generative planning, STRIPS

planning, and classical planning.

Classical automated planning is a special case of the graph search problem. A graph is

a structure defined by its nodes and edges: nodes represent a point in the problem space,

and edges represent connections between the nodes. For example, one can imagine a

railroad system as a graph where the nodes are rail stations, and edges are the railway

tracks. In (state-space) classical planning as graph search, the nodes are the world states,

and the edges are actions that can be taken from that state (in plan-space classical

www.manaraa.com

33

planning, nodes are partial plans and edges are plan refinements. This distinction will be

clarified later.). A world state is a symbolic description (an alphabet is a set of symbols,

like “a”, “b”, “c”; words are symbols constructed from the alphabet. “Symbolic” is to say

a syntax composed of symbols) of facts that are known about the world. For example, a

fact about a person named “Steve” at a restaurant called “Tulum” could be represented as

“(at Steve Tulum)”. An action is an operation that adds and removes facts from a node in

a consistent fashion. The planning problem is a symbolic description of the initial and

goal states (nodes), and a set of operators (actions/edges) that transform states in a well-

defined way. A solution to the planning problem, therefore, is a sequence of actions (a

plan) that transforms the initial state into one of a set of goal states. In graph search

terms, it is a sequence of edge-node-edge transitions that form a path from the specified

start node to the desired end node (eg: Philadelphia train station to the Atlanta train

station, with all the stations and paths in between). However, even for very simple

problems, it is infeasible to explicitly represent all the nodes and edges of the graph –

often, the number of states in the problem outnumbers even the largest estimates of the

number of particles in the universe [Ghallab et al., 2004]! Therefore the various

techniques researched in automated planning center on implicit, compact representations

(logic-based formalisms) of the graph that allow for efficient algorithmic search.

The dominant formalization of the classical planning problem is derived from the

STRIPS system [Fikes & Nilsson, 1971] which has had such a far-reaching impact on the

field that the terms “classical planning” and “STRIPS planning” are frequently used

interchangeably. Mathematically, a planner is a deducing machine. This machine works

by applying a set of inference rules to its input. Both the inputs and rules are governed by

www.manaraa.com

34

a logical system referred to as First Order Logic, or first-order predicate calculus. In this

formalization, the domain description taken as input for classical planning is a state-

transition system described by the triple = (S, A,), where S is a finite set of states, A is

a finite set of actions, and is a state-transition function defined by : S A S. Each of

these elements are summarized in Table 3.1, which is condensed from [Ghallab et al.,

2004]. In this triple, the set of all possible states S is not represented explicitly. Instead, a

state is represented as a finite set of grounded atoms from first-order logic (see Section

3.1.1 for details). Therefore a finite set of predicate symbols and a finite set of constants

allow for the enumeration of all possible states, and these two sets are inputs to the

planning system and used to calculate S as needed.

Symbol Name Meaning

 Sigma, state-

transition system

A formalization that models all reachable states and

valid actions for a particular planning domain

S Set of states, S A finite set of states, each of which is a set of symbolic

facts. These fact sets encode that which is currently

held as true in the problem.

A Set of actions, A A finite set of actions. An action a has the form (head,

pre, neg, pos), where head is a name plus arguments

(e.g. (putdown a)), pre are the preconditions that

govern when the action is “applicable” in a state (e.g.

(holding a)), neg are the negative effects of the action,

which are those facts to be removed from the state to

which the action was applied (e.g. (holding a)), and pos

are the positive effects of the actions, which are those

facts to be added to the state on which the action was

applied (e.g. (ontable a)).

 Gamma, the state-

transition function

S A S

A function that defines, for each state S and action A,

the state reached by applying A to S

Table 3.1. Elements of the domain description input to classical planners

Similar to S, the set of actions A and the state-transition function are not represented

explicitly. Instead, inputs to the planning system are “action schemas,” or “operators,”

www.manaraa.com

35

which have the form o = (o
head

, o
pre

, o
neg

, o
pos

). The head of the operator, o
head

, is a

predicate (a name, and zero or more terms, e.g. “(pickup ?a table)” where pickup is the

predicate name and there are two terms. The first, “?a” indicates a variable which can be

substituted for any constant, and the second term “table” is a grounded constant) and the

preconditions o
pre

, negative effects o
neg

, and positive effects o
pos

 are conjunctions of

atoms whose terms appear in o
head

. Operators are encoded in this fashion so that a single

schema can describe many similar actions by using variables (indicated by being prefaced

with a question mark) as the terms to the predicate. An operator is said to be “grounded”

when all of the terms of the operator are constants; an operator of this form represents

one specific action in the domain. An action a is said to be “applicable” to a state s when

s entails all of the atoms appearing in a
pre

, written as s╞ apre
. When an applicable action a

is applied to a state s, a new state s’ is created. This new state s’ consists of all the atoms

appearing in s, minus all atoms appearing in a
neg

, and with the addition of all atoms

appearing in a
pos

, written as s’ = (s \ a
neg

) a
pos

. If a positive effect is already in s, it is

not added; if a negative effect is not in s, it is simply ignored. Any atom not mentioned in

the effects is assumed to remain unchanged (called the “STRIPS assumption”). Thus, the

state-transition function (s, a) is s’ if action a is applicable in state s, and undefined

otherwise. A plan is a linearly ordered sequence of actions = a1, a2, . . ., ak ; because

the head of the action uniquely identifies the operator of which it is as specialization, only

the head of action is typically used in the enumeration of the sequence.

Finally, a classical planning problem is a triple P = (, s0, g), where is a classical

planning domain, s0 ϵ S is the initial state of the problem, and g is a set of goal atoms that

must appear in the final state when the actions in a solution plan are applied starting from

www.manaraa.com

36

state s0. That is, a solution to problem P is a plan such that the state s’ = ((…, ((s0,

a1), a2), …), ak) satisfies the goals in g. It should be noted that s0 is specified using the

“closed world assumption,” which assumes that any atoms not explicitly asserted as true

are false. Put succinctly, a solution plan is a linearly ordered collection of actions that

when applied, and assuming the actions perform as modeled, achieve the input objective.

In classical planning, there are several other restricting assumptions imposed on the

state-transition system, . These are made in order to simplify the problem which, in its

classical planning form, is in the P-SPACE complexity class [Ghallab et al., 2004]. These

other assumptions state that has the following properties, as summarized in [Ghallab et

al., 2004]:

 has a finite set of states.

 is fully observable, meaning the planner has complete knowledge about the state

of .

 is deterministic, meaning the application of an applicable action transitions to

a single state.

 is static, meaning the system stays in the same state until an action is applied.

 Goals are explicitly specified as a goal state, or set of states, in . A planner’s

objective is therefore to construct a sequence of state transitions that ends in one of

the goal states. This means that goals involving avoiding states, constraints on

state trajectories, or utility functions are not handled in classical planners.

 A plan solving a problem for is a linearly ordered, finite sequence of actions.

 Time is implicit in , meaning actions have no duration and cause an instant state

transition in .

By representing actions, states, and the transition functions in this way, the planning-as-

graph-search problem that could potentially contain millions (or more!) of nodes and

edges is transformed into a compact representation where individual actions and states

are generated as needed.

The following is a brief, traditional example used to illustrate the planning notation

and planning process within a classic domain called “blocks world”. Blocks world is the

www.manaraa.com

37

familiar game of stacking blocks played by children. The world consists of blocks

starting in an arbitrary (but specified) configuration. The world can be modified by either

picking up a block, or putting the one that is held down. The goal is to arrive at a pre-

stated “goal” configuration of blocks.

The process begins by formally defining the problem domain , which is necessary for

defining the planning problem P. Recall that for convenience, and without loss of

generality, the domain is specified by a set of operators. In one representation of blocks

world, the following are the two operators used to change the world state:

(:head (unstack ?x ?y)

 :(pre (

 (clear ?x)(on ?x ?y)(not (ontable ?x)))

 :(neg (on ?x ?y))

 :(pos (clear ?y)(ontable ?x)))

(:head (stack ?x ?y)

 :(pre ((clear ?x)(clear ?y)(ontable ?x)))

 :(neg ((clear ?y)(ontable ?x)))

 :(pos (on ?x ?y)))

Figure 3.1 One set of operators to define a simple “blocks world” domain

The operator “unstack” has two terms, or parameters, and abstracts the action of taking

a clear block (one that has no block on top of it) off of another, and putting it on the table.

It is applicable in a state s where there is nothing stacked on top of the block indicated by

the variable ?x (codified as “(clear ?x)”), block ?x is on the block indicated by variable ?y

(“(on ?x ?y)”), and block ?x is not already on the table (“(not (ontable ?x))”). If

substitutions can be made for ?x and ?y that unify with the current state (that is, a

constant value for ?x and ?y are found such that the positive predicates in the

precondition conjunction are in the world state, and the negative predicates – those

preceded by “not” – do not appear in the world state), then the operator’s negative effects

are removed from the state, and the positive effects are added. That is, the fact that ?x is

on ?y is removed from the world state, and the facts that ?y is now clear and ?x is on the

www.manaraa.com

38

table are added. The operator “stack” does the reverse of unstack, by placing a block that

is on the table onto another block that is clear. Note how the formalization of these two

operators are carefully coordinated by the truths that they require, assert, and retract.

Now that the planning domain is defined, one can create a planning problem P

within this domain. The problem is specified by augmenting the domain with an initial

state s0 and a goal state g. The following are a valid initial and goal state description:

(:initial (on b c)(on a b)(ontable c)) (:goal (on a b)(on b c))

Figure 3.2 One valid initial and goal state description for the domain in Figure 3.1

Having presented the restricted state-transition system in which classical planner

operates, Section 3.2 discusses how this space can be searched for a solution. The next

subsection first carefully defines the building-blocks of classical planning.

3.1.1 Definitions for Classical Planning

As is common in the field of automated planning, I adopted a representation that is

based on first-order logic. This formal representation allows one to express and assign

meaning to strings of characters, which ultimately allows one to model elements of the

real world. What follows are formal definitions of the language and concepts described

above.

Definition 3-1. A constant symbol is syntactically composed from a unique sequence of

one or more alpha-numeric characters, which are, by convention, the upper and lowercase

versions of the 26 letters in the English alphabet, the digit characters ‘0’ through ‘9’, the

dash character‘-‘ and the underscore character ‘_’), for example ‘table’ or ‘truck-1’ (the

single quotes are not part of the symbol); a constant is therefore a string semantically

used to refer to a specific object in the problem being modeled.

www.manaraa.com

39

Definition 3-2. A variable is a symbol that can be used in the place of a constant, akin to

the concept of variables in algebra. As is common in the automated planning field, I

follow the syntactic convention that variables begin with a question mark, followed by a

sequence of one or more characters. Two examples of variables are ‘?x’ and ‘?truck’

(again, the single quotes are not part of the symbol).

Definition 3-3. A term is either a variable or a constant.

Definition 3-4. A particular variable is referred to as bound (past tense of ‘bind’) if and

only if there is an assignment of the variable to a term. For example, if the variable ‘?x’

were to be assigned to the constant ‘table’, then one would say that ?x is bound to table.

When a variable is bound to a constant, the variable is said to be grounded (a reference

to the Earth’s surface, I believe).

Definition 3-5. A predicate name, or predicate symbol, is a character sequence having

the same syntax as a constant. However, rather than referring to an object in the modeled

world, a predicate name is used to semantically refer to a relation in that world. Some

examples of predicate names are ‘on’, ‘at’, and ‘in-city’. Predicate symbols also

have an arity, which indicates the number and names of terms taken as arguments by that

predicate. For example on ?x a has a predicate symbol named ‘on’ of arity 2, the first

term is a variable named ?x and the second is a constant symbol a.

Definition 3-6. An atomic formula, or atom, is a statement of fact about the modeled

world. It is syntactically formed by an opening parenthesis symbol ‘(’ followed by a

predicate symbol, followed by a space separated list of terms equal in number to the

predicate’s arity, followed by a closing parenthesis symbol ‘)’. The space separated list of

www.manaraa.com

40

terms is referred to as arguments or parameters. If all arguments are grounded, then the

atom is also grounded. The following is a comma separated list of example atoms – the

comma is not part of the syntax: (on ?x table), (in package1 truck1), (in-city Lehigh

Bethlehem). Each of the predicate symbols on, in, in-city have an arity two. The only

argument that is a variable is ?x, the rest are constant symbols.

Definition 3-7. A substitution is a collection of variable bindings. When a substitution is

applied to an atomic formula a, a new atom is created by replacing each of the variables

in a with the term to which it is mapped (if such a mapping exists in the substitution).

Definition 3-8. A world state is a finite set of grounded atoms. Semantically, a world

state is an assertion about all facts that are true. By convention, any atom not appearing in

a world state is assumed to be false (the so-called closed-world assumption).

Definition 3-9. A tuple is an ordered list of elements; an n-tuple is an ordered list of n

elements, where n is a non-negative integer. For example (a, b, c, d, e) is a 5-tuple.

Definition 3-10. An action a is defined by a 4-tuple (head, pre, neg, pos). The first

element of the tuple, the action head, has syntax similar to that of an atom: an opening

parenthesis, an exclamation point followed by one or more characters, followed by a

space separated list of constants, ended with a closing parenthesis. An example action

head with a single argument is (!putdown block-a). The exclamation point follows

convention, and makes it easier to distinguish between atomic formulas and the heads of

actions. The remaining elements of the tuple are the action’s preconditions (pre),

negative effects (neg), and positive effects (pos), each of which are finite sets of ground

atoms. Additionally, any parameter appearing in one of these atoms must appear in the

www.manaraa.com

41

head of the action. The purpose of preconditions and effects are described in the next

definition.

Definition 3-11. An action a is applicable to world state s if and only if all atoms in the

precondition set of a are members of s. The applicable action a can be applied to s to

create a new world state s’. The new state s’ is a copy of s with all atoms appearing in the

negative effects of a removed, and all positive effects of a added. If a positive effect of a

is already in s, it is not added; if a negative effect of a is not in s, it is simply ignored.

Any atom not mentioned in the effects is assumed to remain unchanged (called the

“STRIPS assumption”).

Definition 3-12. An operator has the same syntax and semantics as an action (Definition

3-10), with one difference: the arguments appearing in the head may be variables (and

therefore the atoms in the pre, neg, and pos sets may also use variables).

Definition 3-13. A classical planning domain, or classical domain description, is

defined by the 3-tuple Δ = (C, P, O), where C is a finite set of constants, P is a finite set

of predicates, and O is a finite set of operators. A constraint on Δ is that any atom

appearing in O must also be a member of P; similarly, any constant appearing in O must

be a member of C.

Note that this definition of a classical planning domain is slightly different, but

equivalent to, that presented in section 3.1. In that discussion, a domain was defined as a

state-transition system described by the triple = (S, A,), where S is a finite set of

states, A is a finite set of actions, and is a state-transition function defined by : S A

 S. The set of all possible atoms for a given domain can be generated by applying all

www.manaraa.com

42

combinations of constants in C to the predicates in P. The power set of these generated

atoms forms the finite set of states S. The set of actions A can be derived from the set of

operators O by computing all instantiations. Finally, the state transition function can be

derived from the definition of applying actions to world state. I adopt the notation used

for defining Δ because it is closer to how DCPOP and other planners are implemented (as

opposed to the definition of , which is more general than the classical approach).

Definition 3-14. A classical planning problem is a triple Ψ = (Δ, s0, g), where Δ = (C,

P, O) is a classical planning domain, s0 is a finite set of ground atoms describing the

initial world state of the problem, and g is a finite set of atoms that define the problems

goals. All atoms appearing in s0 and g must be derivable from C and P. Also, s0 is

specified using the “closed world assumption,” which assumes that any atoms not

explicitly asserted as true are false.

Definition 3-15. A plan = a1, a2, . . ., ak is a linearly ordered, finite sequence of

actions; because the head of the action uniquely identifies the operator of which it is a

specialization, only the head of an action is typically used in the enumeration of the

sequence.

Definition 3-16. A plan = a1, a2, . . ., ak is a solution to a classical planning problem

Ψ if and only if each action in is an instantiation of an operator in O with constants

from C, and furthermore only if the result of applying all of the actions in sequence

starting from s0 yields a world state containing at least all those atoms appearing in the

problem’s goal set g. That is, a solution to the classical planning problem is a sequence of

www.manaraa.com

43

actions (a plan) that transforms the specified initial state into one of a set of states

containing all the specified goals.

World state A world state is a symbolic description of facts that

are known about the world.

Action schema, or operator An action is an operation that adds and removes facts

in a consistent fashion.

Operator o = (o
head

, o
pre

, o
neg

,

o
pos

)

The head of the operator, o
head

, is a predicate (a name,

and zero or more terms, e.g. “(pickup ?a table)”

where pickup is the predicate name and there are two

terms. The first, “?a” indicates a variable which can

be substituted for any constant, and the second term

“table” is a grounded constant) and the preconditions

o
pre

, negative effects o
neg

, and positive effects o
pos

 are

conjunctions of atoms whose terms appear in o
head

Domain description, “domain” The domain description taken as input for classical

planning is a set of operators that transform world

states in a well-defined way.

Planning problem The planning problem is an initial and goal states,

along with a domain description

Solution to planning problem A solution to the planning problem is a sequence of

actions (a plan) that transforms the initial state into

one of a set of goal states.

3.2 Refining Incomplete Plans – State Space vs. Plan Space Planning

How a planning algorithm represents and explores , the state-transition system in which

the solution (plan) is searched, determines whether it is a plan-space or a state-space

algorithm. A state-space algorithm searches for a plan in a graph whose nodes consist of

world states, and whose edges are applicable actions that transform the world state.

World states are descriptions of what is true in the problem, and are represented by first-

order logic literals as described in the previous section. A plan-space algorithm searches

for a solution in a graph whose nodes consist of partial plans, and whose edges are

www.manaraa.com

44

applicable refinements to those partial plans. The approach presented in this dissertation

makes use of the plan-space representation.

3.2.1 The State Space – Total Order Planning

The simplest algorithm for solving a classical planning problem constructs a search

graph where the root, or start node is the initial state. Children, that is nodes that are a

single edge away, of the root are generated by applying each applicable action (edges), in

order to compute the resulting state (child node). The state-space algorithm continues

expanding the graph until a state (node) is reached that contains all the goals in g; the

solution plan extracted is the actions that form the edges leading from root to the

satisfying node. There exist many search control strategies for guiding which node is next

explored and preventing and detecting loops in the search process, such as depth-first,

breadth-first, and iterative deepening. Heuristics, which define alternative means of

exploring the graph to those mentioned previously and are covered in more detail in the

next section, can also be introduced to further constrain the search process, and are

responsible for many of the most recent breakthroughs in planning research.

Additionally, it is possible to work backwards from the goals in a so-called “means-ends”

approach, which can be more efficient, or to combine forward and backward state search

strategies. Implicit in state-space approaches is a strict linear ordering of the actions in

the plan on account of the graph’s structure; hence, state-space algorithms produce

totally-ordered, sequential plans.

www.manaraa.com

45

3.2.2 The Plan-space – Partial-Order Planning (POP)

Plan-space algorithms in contrast, like the ones created for this dissertation, search in

a graph where nodes are incomplete (partial) plans and edges are refinements applied to,

or removed from, the incomplete plan. That is, instead of searching for a solution in a

graph where nodes consist of world states and edges are actions transforming the state, a

plan-space approach searches over the set of all possible plans [Penberthy & Weld,

1992]. The solution is not extracted from the sequences of edges in the graph (as done in

state-space), but is instead derived from the partial-plan stored within a terminal node of

the graph (the plan-space). Each node in the graph represents a “candidate set” of plans,

and each edge splits the search space into disjoint candidate sets [Kambhampati, 1997].

Some examples of refinements are the addition of actions to the partial plan, or the

addition of ordering constraints between actions. When searching in the space of plans,

the ordering of actions is deferred until essential to resolving a flaw (e.g. unsatisfied

applicability condition of an action). In least commitment planning, where action

ordering is deferred, solution plans are only partially ordered – this means actions can be

flexibly interleaved during execution. Any linearization consistent with this ordering (a

topological sort) is a solution to the classical planning problem. This particular approach

to plan space planning, sometimes referred to as “partial order causal link (POCL)

planning”, is best described in the works describing the SNLP (McAllester & Rosenblitt,

1991), UCPOP (Penberthy & Weld, 1992), and VHPOP (Younes & Simmons, 2003)

planners; unless otherwise stated, when I refer to “partial-order planning” in this

dissertation, it is with the POCL formulation of the plan-space problem in mind.

www.manaraa.com

46

Partial-order planning (POP) was the dominant planning paradigm some 20 years ago

because of its ability to flexibly interleave actions, rather than totally order them, while

solving problems. POP drops the classical requirement for actions to be totally ordered,

which is particularly useful for plan adaptation (e.g., [Ihrig & Kambhampati, 1996],

[Muñoz-Avila & Weberskirch, 1997]). However, interest in POP waned when other

paradigms such as analysis of planning graphs and more recently planning with

heuristics, demonstrated significant gains in planning speed and solvable problem size.

More recently, there has been a revival of POP as heuristic methods have been developed

that perform comparably to other state-of-the-art first-principles planners. Researchers

have pointed out the importance of POP planning for real-world domains because in

many real world situations actions can be performed in parallel and the planner should

not commit to step orderings, such as the extreme case a total-order sequence, unless

necessary (e.g., [Knoblock, 1994], [Paulokat & Wess, 1994], [Nguyen & Kambhampati,

2001], [Vidal & Geffner, 2006]).

Like state-space planning, the partial order planning process requires inputs which are

the same as those defined in Section 3.1 (inputs are action schemas and a symbolic initial

and goal state specification of the problem). Next an initial partial plan is created,

consisting of two special steps s0 and s , and an ordering constraint that forces s0 to come

before s in any solution plan. The step s0 represents the initial state of the problem; s0

has no preconditions and its effects are the atoms in the initial state. The step s

represents the problem’s goals; s has no effects and its preconditions are the atoms in the

goal state.

www.manaraa.com

47

Partial-order planning refines this initial partial plan by adding constraints and plan

steps, ordered between the two initial steps, until a complete partial-order plan is

obtained. A partial-order plan is complete if it has no flaws (flaws are defined in the next

paragraph). A partial-order plan is defined as a 4-tuple (S, , CL, B) of sets of POP

plan elements. S is the set of plan steps, which represent the application of actions in the

plan. The set  contains the ordering constraints between plan steps, which take the

form s  s’, indicating that step s must be executed before step s’. The set CL contains

the causal link constraints, s p s’, indicating that the precondition p needed by the

action in step s’ is produced as the effect of the action in step s. The set B indicates

variable binding constrains, ?x ?y or ?x = ?y, indicating that whenever variable ?x

occurs in the plan it must take a different (respectively the same) value as the variable ?y

(the notation “?x” represents that x is a variable symbol). Set B is empty when planning

without variables (i.e. “grounded”).

The elements of a partial-order plan are summarized below.

www.manaraa.com

48

partial-order plan a 4-tuple (S, , CL, B) of sets of POP plan

elements

Plan steps: the set S S is the set of plan steps, which represent the

application of actions in the plan.

Ordering constraints: the set  The set of ordering constraints between plan steps,

which take the form s  s’, indicating that step s

must be executed before step s’.

Causal link constraints: the set

CL

Set CL contains the causal link constraints, s p

s’, indicating that the precondition p needed by the

action in step s’ is produced as the effect of the

action in step s.

Binding constraints: the set B set B indicates variable binding constrains, ?x ?y

or ?x = ?y, indicating that whenever variable ?x

occurs in the plan it must take a different

(respectively the same) value as the variable ?y (the

notation “?x” represents that x is a variable

symbol). Set B is empty when planning without

variables (i.e. “grounded”).

Table 3.2 Summary of partial-order plan elements

There are two kinds of flaws in POP: open preconditions and causal threats. An open

precondition occurs when a step s’ in the plan has a precondition p, written p@s’, for

which no causal link s p s’ exists. A threat occurs when a causal link s p s’ and a step

s’’ exist such that s’’ has as an effect the negation of p (i.e., p), written s’’  p, and s’’

can consistently occur between s and s’, written s’’ || (s p s’), in a linearization of the

plan. A linearization of a plan is a sequencing of all steps in a manner consistent with the

ordering constraints such that, for every two steps s and s’, s will always be listed before

s’ if either s p s’ or s  s’ hold (e.g. a topological sorting).

There are four possible POP plan refinements, each of which adds an element to the

4-tuple (S, , CL, B) that defines the plan: adding steps, adding ordering constraints,

adding causal links, and adding binding constraints. Ordering links and binding

constraints are added to solve causal threats. A causal link s p s’ is added to satisfy an

www.manaraa.com

49

open condition p@s’ when s p holds. The step s might be an existing step in the plan or

a new one added to satisfy this open condition.

The POP planning process starts from the initial partial plan representing the classical

planning problem, defined in Section 3.1 as a triple P = (, s0, g), where is a classical

planning domain, s0 ϵ S is the initial state of the problem, and g is a set of goal atoms. As

in classical planning, the solution to the problem is a sequencing of actions that, when

applied, transform the initial state into a state that entails the goals (i.e., the state contains

all goals). Whenever a new step s is added to the plan the ordering constraints s0  s and

s  s are added to the plan. The objective of the POP planning process is to refine the

initial partial-plan into a complete partial-order plan. Any linearization of this complete

partial-order plan is a solution to the planning problem. It is notable that there may be

many valid linearizations of the partial-ordered plan and thus it represents a set of

solutions to the problem (because the actions can be interleaved in any manner consistent

with their partial order).

www.manaraa.com

50

initial partial plan consists of two special steps s0 and s , and an ordering

constraint that forces s0 to come before s in any solution plan

The step s0 The step s0 represents the initial state of the problem; s0 has no

preconditions and its effects are the atoms in the initial state.

The step s The step s represents the problem’s goals; s has no effects

and its preconditions are the atoms in the goal state.

Flaws Problems in a partial-plan that need resolution before the plan

is “complete”; there are two types, open preconditions, and

threats

Flaw: open

preconditions

open precondition occurs when a step s’ in the plan has a

precondition p, written p@s’, for which no causal link s p s’

exists. In the initial partial plan, all the preconditions of s are

the only flaws in the plan.

Flaw: Threats A threat occurs when a causal link s p s’ and a step s’’ exist

such that s’’ has as an effect the negation of p (i.e., p), written

s’’  p, and s’’ can consistently occur between s and s’,

written s’’ || (s p s’), in a linearization of the plan.

POP plan refinements,

“flaw resolutions”

There are four possible POP plan refinements, each of which

adds an element to the 4-tuple (S, , CL, B) that defines the

plan: adding steps, adding ordering constraints, adding causal

links, and adding binding constraints. Ordering links and

binding constraints are added to solve causal threats. A causal

link s p s’ is added to satisfy an open condition p@s’ when s

p holds. The step s might be an existing step in the plan or a

new one added to satisfy this open condition.

Complete partial-order

plan

A partial-order plan is complete if it has no flaws

Linearization of a

partial-plan

A linearization of a plan is a sequencing of all steps in a

manner consistent with the ordering constraints such that, for

every two steps s and s’, s will always be listed before s’ if

either s p s’ or s  s’ hold (e.g. a topological sorting).

Table 3.3 Summary of terms used in partial-order planning.

Partial-order planning is an attractive framework because its least commitment

property makes it amenable to (1) interleaving planning and execution, (2) performing

information gathering, and (3) handing resource and time constraints [Nguyen &

Kambhampati, 2001]. At the same time the flexibility provided by its least commitment

strategy can be detrimental to its performance. In this regard it is noteworthy that, as far

www.manaraa.com

51

as the author is aware, until now no scalable domain-configurable partial-order plan

adaptation algorithm exists.

3.3 Search Control Knowledge

Search control knowledge can both be built into the planner, and taken as input by the

planner. In either case, it is used to guide the search process by determining which edge-

node pair is next selected in the graph representing the search space. There are three

broad ways of making this selection: domain-independent strategies, domain-specific

strategies, and heuristics (which confusingly can also be domain-independent or domain-

specific). A planner that takes domain-specific control knowledge as input is termed

domain-configurable.

Domain-independent selection strategies are ones that are the same regardless of the

domain. An example in the partial-order planning process is to resolve threats before any

other flaw type. That is, if there are two edges leaving a node, one denoting a refinement

that resolves a threat and the other being a refinement that resolves an open condition, the

edge that resolves the threat will be explored first.

Domain-specific selection strategies are tightly coupled to a particular problem

domain. An example in a problem domain involving the transportation of packages to

destinations would be to always explore an edge that moves a package closer to its final

destination.

Heuristics are a means of assigning a mathematical evaluation of costs to the choice

points in a search space. For example, rather than always resolving a flaw that is a threat

www.manaraa.com

52

first to the exclusion of every other edge, a heuristic would estimate the expected utility

of following each edge, and select the one that appears to be the “best guess”.

3.4 Heuristics in Planning

Many planners use heuristics to estimate how difficult it is to find a solution from a

particular node in the search space. Heuristics are one way of tackling the overwhelming

size of the problem. A good heuristic is inexpensive to compute and closely approximates

the actual cost to the solution, which allows the most promising paths to be explored first.

Because of the successes of using heuristics in planning (for example, FastForward and

Graphplan are two very successful planners that have dominated the field for some time

solely through the use of good heuristics), as well as the success of domain-configurable

algorithms (for example the SHOP planner, which is one of the most successful planners

used by industry), the HIEPPR-POP approach uses of both techniques to control the adaptation

process.

Where does this domain-independent search control come from? There exist many

domain-independent strategies to refine partial-order plans. For example, some simple

strategies call for solving all open conditions first and then solving the threats. Other,

more sophisticated strategies strike a balance between resolving the causal threats and the

open conditions [Pollack et al., 1997]. POP planning using these strategies has been

empirically shown to perform slower than other more recent first-principles planners such

as those that use planning graphs or newer heuristics also based on planning graphs.

Nevertheless, some heuristics that were originally conceived for total-order planning

have been successfully ported for POP and have resulted in a significant increase of

www.manaraa.com

53

performance. These heuristics estimate the cost of reaching a complete plan from the

current partial plan. Such estimates are used to compare competing refinements with A*

cost functions [Hart et al., 1968] or other heuristic cost functions [Younes & Simmons,

2003]. Planning graphs have been used to estimate the cost of refining the current partial

plan into a complete plan [Blum & Furst, 1997]. The heuristic estimate is obtained by

removing all negative effects from the actions and using planning graphs to obtain a

solution for this relaxed problem (e.g., [Hoffmann & Nebel, 2001]). A similar process has

been developed for POP planning with adjustments to account for the fact that POP does

not maintain an explicit world state, whereas totally-ordered planners (like FastForward)

do [Nguyen & Kambhampati, 2001]. An example of this is the heuristic POP planner

VHPOP (for Versitaile Heuristic Partial Order Planner)[Younes & Simmons, 2003],

which has also been used to build another heuristic POP adaptation planner [van der

Krogt & de Weerdt, 2005] and a probabilistic conformant POP planner [Onder et al., 2006].

3.5 Domain Configurable Planning

There are a host of approaches to solving the classical planning problem. The one created for this

dissertation focuses on one form in particular: domain-configurable, partial-order (plan space)

plan adaptation.

A domain-independent planner is one that takes as input a symbolic description of the

initial and goal states, as well as knowledge about the problem domain. This knowledge

is encoded as action models (operators) that specify applicability conditions for each

action, as well as the effects of the action on the state of the world; that is to say, action

models encode how to compute a state transition in . What separates domain-

configurable planners from domain-independent planners is that, in addition to receiving

www.manaraa.com

54

all inputs required by the domain-independent planners, hand-crafted domain-specific

control knowledge is also taken as input. This control knowledge is additional

information that is tightly coupled to the problem domain and is used by adaptive and

generative algorithms to guide the exploration of the search space. For example, in

hierarchical task network planning (HTN) the control knowledge is encoded by non-

primitive methods, which are used to reason about the search space at a level higher than

the action models (this is further explained in the HTN Planning sub-section). The

adaptation algorithm presented in this dissertation goes beyond the classical planning

problem by taking hand-crafted adaptation control rules as input.

Domain-configurable planning is a form of planning in which domain-specific

knowledge enhancing the action schemas is given. This knowledge is used to guide the

planning process which, like first-principles planning, generates a plan from scratch.

Domain-configurable planners have been shown to solve problems more quickly and to

scale much better with problem size than first-principles planners. For example, in most

domains used in the International Planning Competition (IPC), a first-principles planner

would solve up to a dozen of goals in the same amount of time that a domain-

configurable planner would solve several dozens of goals. Furthermore, for these

domains, first-principle planners are not able to solve problems with hundreds of goals in

any reasonable amount of time, while their domain-configurable counterparts can.

Because of their scalability, their increasing number of applications [Nau et al., 2005],

and their capability to drop classical planning assumptions, domain-configurable

approaches are believed to be closing the gap between academic research in AI planning

and real-world applications [Nau, 2007]. One of the most successful domain-configurable

www.manaraa.com

55

approaches is HTN planning, which uses a knowledge structure called methods to

drastically constrain the search process; more details on HTN planning are presented in

the next sub-section.

Competing approaches have been developed for domain-configurable planning,

including variants of HTN planning [Nau et al., 1999; 2005], temporal logic planning

[Bacchus & Kabanza, 2000; Kvarnström, & Doherty, 2001; Kvarnström & Magnusson,

2003] and term-rewriting rules [Ambite et al., 2001; 2005]. These competing approaches

have in common the ability to scale performance with increasing problem size and clear

semantics [Kvarnström et al., 2000; Bacchus, and Ady, 2001; Kuter & Nau, 2005]. They

differ in the presentation of the domain-configurable knowledge and how it is used. Some

use HTN constructs to encode domain-specific knowledge and HTN planning to use this

knowledge. Others use temporal logic rules and modify a first-principles planning

process to prune nodes in the search space as indicated by the given rules. Temporal logic

(TL) rules are used in TLPlanner and TALPlanner in a forward state-space search

process. These rules use temporal logic modal operators that express relationships

between a state and subsequent states, and are used to define a prune function that detects

and cuts unpromising nodes (i.e., states) in the state space. For example, a rule might

encode the following condition: “Do not move a block if its current position is consistent

with the goal configuration”. If the planner reaches a state S where one such block has

been moved from a previous state in which its location was consistent with the goal

configuration, then the rule will trigger and prune S from the search space.

The PbR (Planning by Rewriting) system [Ambite et al., 2001; 2005] uses term

rewriting rules to transform partial-order plans solving a problem into other partial-order

www.manaraa.com

56

plans solving the same problem but with better quality. While PbR does transform

partial-order plans, it is not partial-order planning, which is the process of refining

partial-order plans to solve POP flaws and that begins from the initial plan and ends in a

complete plan. Instead of plan refinement as done in partial-order planning, PbR can be

seen as circumscribed to navigate in the subspace of complete partial-order plans.

3.5.1 HTN Planning

In Hierarchical Task Network planning, the planning system formulates a plan by

recursively decomposing tasks (symbolic representations of activities to be performed)

into smaller subtasks until primitive tasks are reached that can be executed. Primitive

tasks represent concrete actions to be undertaken to achieve the high-level tasks. The

basic idea was developed in the mid-1970s [Sacerdoti, 1975] and expanded into large-

scale systems in the 1980s [Wilkins, 1988]. The formal semantics were developed later

[Erol et al., 1994]. A domain description in HTN planning consists of an action model

and a task model. The action model consists of a set of planning operators that describe

the actions the plan executor can perform directly. Operators have the same form as in the

classical planning problem: (:operator h p e), where h is the primitive task being

performed (called the head of the operator), p are the preconditions that determine the

applicability of the operator, and e are the effects of applying the operator. The task

model consists of methods that describe possible ways of decomposing tasks into

subtasks. Methods have the form (:method h p st), where h is the nonprimitive task being

decomposed (called the head of the method), p are the preconditions that determine the

applicability of the method, and st is the collection of subtasks.

www.manaraa.com

57

The particular variant of HTN planning most closely related to the approach presented

in this dissertation is Ordered Task Decomposition (OTD) [Nau et al., 1999]. This is the

variant used in SHOP and resulted in significant gains in runtime. In Ordered Task

Decomposition, an ordered list of nonprimitive tasks is given as input. The first task in

the list is decomposed into subtasks, and the first of these subtasks is further decomposed.

The decomposition process recursively continues until a primitive task is obtained. In this

situation, an operator applicable to the primitive task is applied. Planning continues with

the next task until all nonprimitive tasks are decomposed into primitive tasks, which in

turn have been achieved with applicable operators. The solution plan consists of the

collection of all primitive tasks in the order they were generated. The task hierarchy

linking the tasks in the HTN problem description with the primitive tasks in the solution

plan is a hierarchical task network (HTN) and it is said that the HTN entails the plan. For

a detailed presentation please refer to [Nau et al., 1999].

3.6 Case-Based Planning

Case-based planning (CBP) is the intersection of planning and case-based reasoning

(CBR). In CBR, previous problem-solving episodes are reused to solve new, similar

problems. These episodes are stored as cases consisting of a description of the problem,

its solution, and additional annotations. A variety of representations are used in the cases,

depending upon the class of problems addressed (e.g. classification, configuration,

planning). Formally, CBR can be described as a four step process: (1) the retrieval of

relevant cases to a new problem, (2) the reuse of a previous solution in a case to the new

www.manaraa.com

58

problem, possibly through adaptation, (3) the revision of the new solution after

simulation or execution, and (4) finally retaining the solution as a new case.

When CBR is used for automated planning, then the technique is CBP. Plan adaptation

primarily addresses the reuse and revision phase of CBP, and is a topic central to CBP

research [Cox et al., 2006]. In this dissertation I focus on plan adaptation and will not

address the retrieval nor retention elements of CBP. However, important relationships

exist between computing the similarity measures during case retrieval to assure adaptable

solutions and performing effective adaptation during case reuse [e.g., Lopez de Mántaras

et al., 2006]. Further details of CBP are omitted from this section; for an in-depth review

of research in case-based plan adaptation please refer to [Munoz-Avila and Cox, 2008].

3.7 Learning and Planning Control Knowledge

Research on learning and planning has concentrated for the most part on attaining speed-

up gains, such as learning macro-operators (e.g., [Mooney, 1988; Botea et al. 2005]) and

work on learning search control knowledge (e.g., [Mitchell et al., 1986; Etzioni, 1993;

Katukam & Kambhampati, 1994; Minton, 1988; Fern et al., 2004]). Techniques have

been proposed for learning action models (e.g., [Martin & Geffner, 2000; Winner &

Veloso, 2003]), and learning hierarchical task methods [Hogg and Munoz-Avila, 2007;

Choi & Langley, 2005; Reddy and Tadepalli; 1997, Ruby and Kibler, 1991]. Although

most of these works fall in the category of speed-up learning; the learned knowledge is

used to generate the same plans that could be generated by a first-principles (non-

adaptive) planner.

www.manaraa.com

59

3.8 Plan Adaptation

Plan adaptation has been the subject of ongoing research interest for easily twenty years,

thanks to the belief of some in the research community that plan adaptation is easier than

planning from scratch in many situations. One of the first systems to gain fame most

notably for its approach to the plan adaptation problem (as part of the CBP problem) was

CHEF [Hammond, 1986]. This system focused on the Szechwan cooking domain, and

used domain-specific plan adaptation rules to repair flaws in cooking recipes, which were

the plans in this system. Unlike domain-configurable planners, CHEF was an algorithm

hand-crafted to its domain, relying upon the human expert’s plan modification rules.

Systematicity and completeness were not guaranteed.

Plan adaptation is a problem-solving method in which existing plans are modified

consistently with given action schemas to solve new problems. Over the years there has

been a significant research effort on this problem-solving technique. Works include

complexity analysis for worst case scenarios [Nebel & Koehler, 1995], search-space

analysis [Au et al., 2002; van der Krogt & de Weerdt, 2005; Kuchibatla & Munoz-Avila,

2006], plan merging [Veloso, 1994; Munoz & Weberskirch, 1997; Ram & Francis, 1996;

Tonidandel & Rillo, 2005] and plan adaptation algorithms for several planning paradigms

including total-order planning [Veloso, 1994], partial-order planning [Ihrig &

Kambhampati, 1997; Munoz-Avila & Weberskirch, 1996], HTN planning

[Kambhampati, 1994], planning graphs [Gereveni & Serenia, 2000], heuristic planning

[Gerivini & Serina, 2009; van der Krogt & de Weerdt, 2005; Tonidandel & Rillo 2002],

and Ordered Task Decomposition planning [Warfield et al., 2007 & Ayan et al., 2007].

Part of the reason for this continuing interest in plan adaptation is attributable to studies

www.manaraa.com

60

indicating potential applications, which include military planning [Mitchell, 1997; Veloso

et al., 1997; Munoz-Avila et al., 1999], computer gaming [Ontañón et al., 2007; Sanchez

et al., 2007], manufacturing [Costas & Kashyap, 1993; Munoz-Avila & Weberskirch,

1996; Veerakamolmal & Gupta, 2002], route planning [Haigh et al., 1997], medicine

[Schmidt et al., 2001, 2003; Salem et al., 2003], and bioinformatics [Jin et al., 2009].

A common feature of how these planners operate is that they combine two steps: (1)

baseline plan generation and (2) first-principles expansion of the plan obtained in (1).

The first step obtains a plan, called the baseline plan, based on the source plan (i.e., the

plan to be adapted). Multiple techniques have been proposed for the first step including

removing elements in the source plan that are not mentioned in the target problem (e.g.,

the adjust-plan step as in [van der Krogt & de Weerdt, 2005]) and replaying the decisions

that derived the source plan in the context of the target problem (e.g., derivational replay

as in [Veloso, 1994]). The second step simply passes the resulting plan from the first step

to a first-principles planner to obtain a solution plan for the target problem or a sub-

problem of the target problem. These steps can be performed as a batch process whereby

once the baseline plan generation step finishes, the first-principles expansion is

performed until a complete solution of the target problem is obtained (as in [Warfield et

al., 2007]) or it can be interleaved as in [Gerivini & Serina, 2009] where the steps are

performed on subplans of the source plan at different time intervals.

The interaction between these two steps partly explains why plan adaptation algorithms

have consistently demonstrated performance improvements over the corresponding first-

principles planning on which they are built including total order planning [Veloso, 1994],

partial-order planning [Ihrig & Kambhampati, 1997], planning graphs [Gerevini &

www.manaraa.com

61

Serenia, 2000], and heuristic planning [Gerivini & Serina, 2009; van der Krogt & de

Weerdt, 2005; Tonidandel & Rillo, 2002]. Informally, the underlying first-principles

planner is still doing the “leg work” in the first-principles expansion and the input plans

are giving a “jump start” as a result of the baseline plan generation step.
2
 This

explanation is formalized in Au et al. (2002) and Kuchibatla & Munoz-Avila (2008).

The first-principles expansion step is largely uninformed about plan quality issues for

most existing systems. For example, van der Krogt & de Weerdt (2005)’s system uses

heuristics to estimate the number of refinements needed to obtain a solution using a

relaxation of the domain obtained by removing all negative effects of the operators (this

heuristic was first implemented in [Hoffman & Nebel, 2001]). Therefore, this procedure

aims at finding any solution as quickly as possible. More recently, researchers have

started looking into plan quality aspects during plan adaptation. For example, Fox et al.

(2006) proposes an algorithm that successively improves the quality of the adapted plans

while still preserving much of the baseline plan. The plan quality measurements are

explicitly encoded in the plan generation knowledge and, hence, first-principles plan

generation can produce plans of similar quality albeit requiring more CPU time as

demonstrated in their empirical evaluation.

3.8.1 Derivational Analogy and Transformational Analogy

Plan adaptation algorithms can be classified between “derivational analogy” and

“transformational analogy” [Carbonell, 1986]. Derivational analogy systems store the

2
 In Veloso (1994) the baseline plan generation and first-principles expansion steps are interleaved.

Derivational replay is used to generate the baseline plan. The expansion step can be viewed as “gluing”

together baseline plans.

www.manaraa.com

62

sequence of derivations that led to the source plan rather than the source plan itself. For

instance, in planning episodes found in a derivational system, the addition of a particular

plan step would be augmented with information about failed alternatives. It was first

developed in Prodigy/Analogy [Veloso & Carbonell, 1993] on a total order planner. The

system interleaved the baseline plan generation and plan expansion to combine multiple

subplans. So the plan expansion steps could be seen as “gluing” together the baselines

subplans obtained after replaying the derivations relative to the target problem.

Derivational analogy was also developed for partial-order planning in DerSNLP [Ihrig &

Kambhampati, 1994] & CAPlan/CbC [Munoz-Avila & Weberskirch, 1996]. An example

of derivational analogy in HTN planning would be Repair-SHOP [Warfield et al., 2007].

Transformational analogy systems use the source plan directly during adaptation. In

transformational analogy the stored solutions are previously generated plans, nothing

more; these plans can be partially or totally-ordered, depending upon the underlying

planner used in the system. Transformational systems have been developed for partial-

order hierarchical planning [Kambhampati & Hendler, 2002], partial-order planning

[Hanks & Weld, 1995], heuristic planning [van der Krogt & de Weerdt, 2005], and

ordered task decomposition planning [Warfield & Munoz, 2007; Goldman & Kuter,

2008]. Most of the recent plan adaptation systems fall in the transformational analogy

category, including RePlan [Boella & Damiano, 2002], Fox et al, (2006), Serina &

Gerivini (2009), and Tonidandel & Rillo (2005). A potential reason for this trend is

because of the higher engineering requirements for derivational approaches, as pointed

out by Cunningham et al. (1994). However this point is not conclusive because in

derivational analogy, a first-principles planner can be used to generate the sequence of

www.manaraa.com

63

derivations automatically. Nevertheless, transformational systems tend to be considered

more practical for industry purposes, in spite of the clear flexibility advantages enjoyed

by those that are derivational. The domain-configurable adaptation technique explored in

this dissertation does not presume a derivational trace and as such is akin to a

transformational approach.

3.8.2 Plan Repair

Some of the works mentioned such as Fox et al. (2006) and Warfield & Munoz (2007)

present themselves as plan repair systems. In plan repair, a plan is being executed and

during the execution a mismatch occurred between the conditions expected to be true in

order to execute the next action and the actual state of the world. At this point the system

needs to adapt the remaining actions to be executed to the changing circumstances. In

other words, plan adaptation can be viewed as a plan repair problem where conditions

changed before the first action of the plan was executed, which is how Fox et al. (2006)

tested their system. Analogously, one could say that plan repair is a plan adaptation

problem relative to the remainder of the plan not yet executed, which is how Warfield &

Munoz (2007) tested their system.

3.8.3 Adaptation Frameworks

One of the most robust frameworks for understanding transformational plan

adaptation, SPA (for Systematic Plan Adaptor), was reported in [Hanks & Weld, 1995].

In that work, the problem of systematic plan adaptation was formalized as the process by

which refinements made by a classical, generative partial-order planner (e.g., addition of

an action, addition of ordering constraint) are retracted. This could also be read as a

www.manaraa.com

64

process by which the refinements made by a first-principle, first-order, non-adaptive,

plan-space planner, are the elements that are considered for removal – i.e. removing steps

and removing orderings. In the search space of partial plans, the root node is the null

plan, and children are all one-step, systematic partial-order plan refinements (step,

ordering, or binding constraints). A retraction, therefore, removes such a refinement by

adding the current node’s parent and sibling nodes to the fringe of the search tree (that is,

travel up the edge from child to parent, and enqueue all nodes reachable by every other

edge). In this sense, refinements move downward in the search space and retractions

move up. To ensure systematic search, nodes added to the fringe are tagged as “up” or

“down,” indicating that only retractions or refinements, respectively, are applied to the

node. Figure 3.3, taken from [Hanks & Weld, 1995], illustrates this process. Later,

Kuchibatla (2006) presented TransUCP, a framework that extended SPA to work with

any classical planner. However, the idea of retraction and refinements remains the same.

Figure 3.3 Plan retraction as defined (and depicted) in SPA Figure from [Hanks &

Weld, 1995], and later in TransUCP [Kuchibatla, 2006] and [van der Krogt & de Weerdt,

2005].

Recent progress in adaptive planning was reported in [van der Krogt & de Weerdt,

2005], where a new process of domain-independent adaptation was shown to beat

planning from scratch in each of their benchmarks. At the core of the technique is the

computation of “removal trees”. Intuitively, these trees modify an input partial-order plan

www.manaraa.com

65

by combining several retractions at once. Instead of performing a single retraction, the

causal links involving an action are used to iteratively grow a tree of actions that are

removed from the plan. In Figure 3.4, an example removal tree (of size three, its height)

is depicted; circles indicate the elements of the plan that remain after the tree is removed.

A full discussion of how to create these trees is outside of the scope of this document.

However, a casual explanation is as follows. They compute the tree step-wise. First they

remove a single step. If a correct plan cannot be made from this new plan, they then

additionally remove the children of the removed step. If a solution cannot be made from

this new plan, the process is repeated, removing the children of the children, until a

solution can be produced. Worst case, this results in removing all steps from the plan and

generating a solution from scratch.

Figure 3.4 A removal tree, as depicted in [van der Krogt & de Weerdt, 2005]. Circles

indicate the parts of the partial-order plan that remain after the tree is removed.

The approach described by van der Krogt et al & de Weerdt can be seen as a special

form of adaptation as performed by TransUCP. Abstracting away the means by which a

retrieved plan is adjusted to a new problem (prior to adaptation), one can depict the two

frameworks as shown in Figure 3.5. The retraction phase in van der Krogt’s work begins

with removal trees of size zero (i.e., no retraction). Then, for all partial plans in the new

www.manaraa.com

66

set, a generative planner is called until success or failure is reported. If a new plan could

not be found, the size of the removal trees is increased by one and the process repeats. In

TransUCP, on the other hand, retraction is unguided, aside from the restriction that

removals must occur in the same way that a generative planner might have made the

refinements. Also, for any given partial plan in the set to be searched, any number of

refinements can be made. The same is true for retractions in TransUCP. In this

dissertation, I explore the ability to encode adaptation techniques that guide the

“retraction” phase in the right side of Figure 3.5 (e.g. to compute removal trees).

Adjust Plan

ComputeTrees(k)

UCP

Fail?

P, k=0

yes

Set of P

for all P in P

retraction

no

DONE

k=k+1

Adjust Plan

ComputeTrees(k)

UCP

Fail?

P, k=0

yes

Set of P

for all P in P

retraction

no

DONE

k=k+1

AdjustPlanExactly

Fail?
yes

P  P U P’ - P

retraction

no

DONE

Set of P = {P}

ND

Retract

UCP #steps?

AdjustPlanExactly

Fail?
yes

P  P U P’ - P

retraction

no

DONE

Set of P = {P}

ND

Retract

UCP #steps?

Figure 3.5 Two flow diagrams depicting two forms of domain-independent plan

adaptation. On the left is adaptation as performed by [van der Krogt & de Weerdt, 2005].

On the right is adaptation as performed by [Kuchibatla & Munoz-Avila, 2006]. In this

figure, UCP stands for any classical, generative planner.

www.manaraa.com

67

4 Partial Order Planning With Refinement Rules

The main goal of this dissertation is to address the problem of capturing high-quality,

hand-crafted plan refinement and plan adaptation knowledge. This chapter presents the

core of the algorithm I created to address this problem, and an analysis of its properties.

The material presented in this chapter relies heavily on the algorithms and notation

presented in Chapter 3, and in particular the formalizations of classical planning

described in Section 3.1.1, and the formalization of partial-order planning explained in

Section 3.2.2.

Partial-order planning is an attractive framework because its least commitment

property makes it amenable to (1) interleaving planning and execution, (2) performing

information gathering, and (3) handling resource and time constraints [Nguyen &

Kambhampati, 2001]. At the same time the flexibility provided by its least commitment

strategy can be detrimental to its performance. In this regard it is noteworthy that, as far

as I am aware, until now no scalable domain-configurable partial-order plan adaptation

algorithm exists.

The remainder of this chapter is organized as follows: the theory of partial order

planning used by the approach presented in this dissertation is formally defined (the

previous explanation was informal and general). After that, I introduce the main

knowledge representation formalism I created and used for my approach – “refinement

rules”. Next, the motivating example from Chapter 2 is revisited more formally in order

to re-situate the refinement rules. Following that, I describe the algorithm for capturing

www.manaraa.com

68

and using the rules. Finally, the motivating example is reworked in order to show the

theory of refinement rules in action.

4.1 Partial-order Planning Definitions

This chapter relies upon the theory of classical planning, and partial-order planning in

particular. The definitions and notation essential to these theories, which are strongly

influenced by [Ghallab et al., 2004, and Weld 1994], are presented in the next two

subsections (please refer to the previous chapter for a less formal, intuitive presentation

of each). This particular approach to plan space planning, sometimes referred to as

“partial order causal link (POCL) planning”, is best described in the works describing the

SNLP (McAllester & Rosenblitt, 1991), UCPOP (Penberthy & Weld, 1992), and VHPOP

(Younes & Simmons, 2003) planners; unless otherwise stated, when I refer to “partial-

order planning” in this dissertation, it is with the POCL formulation of the plan-space

problem in mind.

4.1.1 Partial-order planning

This dissertation adopts a specific approach to plan space planning, sometimes referred to

as “partial order causal link (POCL) planning”, that is best described in the works

describing the SNLP (McAllester & Rosenblitt, 1991), UCPOP (Penberthy & Weld,

1992), and VHPOP (Younes & Simmons, 2003) planners; unless otherwise stated, when I

refer to “partial-order planning” in this dissertation, it is with the POCL formulation of

the plan-space problem in mind.

In state-space search for a solution plan, where the nodes in the graph explored are

world states and edges between nodes are applicable actions that transform the origin

www.manaraa.com

69

node to the destination node, there are both explicit and implicit commitments being

made by the planner. The explicit commitments made are (1) the addition of an action to

the solution plan, and (2) the restriction of precisely when the action is to be executed

relative to all the other actions in the plan. What is being implicitly committed to are (1)

substitutions for operator parameters that yield the ground action added to the solution,

and (2) the justification for how the preconditions of an action are supported – that is how

each atom in the action’s precondition set is guaranteed to be an element of the state

immediately preceding the application of the action. Partial-order planning search

algorithms refine the state-space algorithms by making each of the state-space decisions

explicit, and furthermore, by only committing to a decision if it is absolutely necessary to

ensure the correctness of the returned solution (the so-called “least-commitment”

property).

The key insight for understanding partial-order planning is the idea of plan “flaws”,

which are derived from making all state-space search decisions explicit. Consider the

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning

domain, s0 is a finite set of ground atoms describing the initial world state of the problem,

and g is a finite set of atoms that define the problems goals. As before, the solution to this

problem is a sequence of steps that, when applied starting from the specified initial world

state, and assuming actions perform as modeled, result in a terminal state containing at

least all the goals specified in g. Rather than performing the search for a solution by

reasoning on the applicability of actions to world states (state-space search), the search is

performed by reasoning on the applicability of resolution strategies to errors (flaws) in

candidate partial-order plans (plan-space search). These flaws guarantee the candidate is

www.manaraa.com

70

not (yet) a solution to the problem. Search terminates when a candidate is generated with

no flaws remaining, resulting in a complete partial-order plan, any linearization of which

is ensured to be a solution to the classical planning problem.

What are the errors in a partial-plan that prohibit it from being a solution? The answer,

somewhat surprisingly, amounts to only two flaw types that invalidate the guarantee that

a step’s precondition will exist in the state immediately preceding the execution of that

step: this first flaw type centers on which step is to provide (assert) the needed

precondition, and the second flaw type centers on when the step must occur.

This first flaw type is referred to as an ‘open condition’ or ‘unsupported precondition’.

Intuitively, this reflects the situation where a step s has a precondition p that has no

specified provider. Resolving a flaw of this type amounts to committing to the provider

of p by either using the initial state (if p is an element), reusing a step in the plan that

asserts p as an effect, or adding a new step to the plan having p as an effect and ordering

it to occur before s. This resolution approach respects the ‘least commitment property’ in

that, by definition, a step is only executable if all of its preconditions appear in the state

immediately preceding its execution. Hence, at a minimum, any search process to

generate a solution to a planning problem must guarantee that all preconditions of every

step in a candidate plan be established at some point in the plan (that is, which step

provides the necessary condition).

The second flaw type also has to do with guaranteeing that a step’s precondition will

exist in the state immediately preceding the execution of that step. However, rather than

having to do with committing to a provider of a precondition (as is the case with an open

condition flaw, which ensures that a precondition is provided as an effect by some step in

www.manaraa.com

71

the plan), this second flaw type, called a ‘threat’ has to do with committing to an ordering

of steps (that is, when the step should occur). Why is handling open condition flaws

insufficient to ensure the correctness of a candidate solution plan?

Consider the following: two steps, unordered relative to one another, have been added

to a partial-plan, in order to resolve two open conditions. The first step s1 asserts p for sx,

and the second step s2 negates p for some other step. Without any constraints on the

ordering of s1 and s2 relative to each other, it would be possible to attempt to execute s1

(assert p) followed by s2 (delete p), followed by sx (which requires p). This would have

the unintended and harmful result of breaking the commitment that s1 provide p for sx,

and yield an incorrect (not executable) plan, because s2 has removed p from the world

state prior to the execution of sx. This is why s2 is said to ‘threaten’ the effect provided by

s1 for sx. Resolving a flaw of type threat amounts to making a (now necessary)

commitment to the ordering of s1, s2, and sx (by either ‘promoting’ s2 by forcing it to

occur after sx, or by ‘demoting’ s2 by forcing it to occur prior to s1), or making a (now

necessary) commitment to the binding of variables such that the effects of s1 and s2 are

not the same (a ‘separation’).

Resolving these two flaw types are a necessary and sufficient condition to guarantee

the correctness of the generated partial-order plan. Because all flaws must be resolved,

and once a flaw has been repaired it never occurs again, least-commitment partial-order

planning amounts to making commitments on how to resolve flaws. The selection of

which flaw to repair has a profound effect on the time taken to find a solution, but is not a

backtrack point, so long as all resolvers to a repaired flaw are added to the search frontier

and the repaired plan is removed from it. This approach of flaw resolution not only

www.manaraa.com

72

guarantees that all solutions returned by the search process are correct (so-called

‘soundness’), but also that all solutions appear as leaves in the search graph (so-called

‘completeness’) and that no plan is ever considered twice in the search process (so-called

‘systematicity’).

The definitions of the above terms, and a presentation of the least-commitment partial-

order planning algorithm appear below.

Definition 4-1. A plan step is an instantiation of an operator (each parameter of the

operator has a substitution to a term) from the input classical planning domain (Definition

3-13), or the special partial-order planning “initial step”, or the special partial-order

planning “goal step” (see the next two definitions).

Definition 4-2. The initial step, often written as s0, is a special non-executable step that

all partial-order plans contain; it is used for representing the initial state of a given

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning

domain, s0 is a finite set of ground atoms describing the initial world state of the problem,

and g is a finite set of atoms that define the goals of the problem. It is constructed as the

instantiation of a “dummy” operator having no preconditions, and a set of positive effects

that contains all the atoms appearing in the problem’s initial world state, and a set of

negative effects that, while typically left empty for computational time and space

efficiency, is semantically understood to contain all atoms in the domain that are not

elements of the set of positive effects. While the initial step is never to be executed, it is

always constrained to be the very first step of a partial-order plan.

www.manaraa.com

73

Definition 4-3. The goal step, often written as s , is a special non-executable step that all

partial-order plans contain; it is used for representing the goal state of a given classical

planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning domain, s0 is

a finite set of ground atoms describing the initial world state of the problem, and g is a

finite set of atoms that define the problems goals. It is constructed as the instantiation of a

“dummy” operator having no positive nor negative effects, and a precondition set that

contains all the goal atoms appearing in g. While the goal step is never to be executed, it

is always constrained to be the very last step of a partial-order plan.

Definition 4-4. An ordering constraint is a relation between two steps in a plan p. It

takes the form si < sj where si and sj are steps, and it semantically means that si must

appear before sj in any linearization of p.

Definition 4-5. A binding constraint is a relation between a variable v and term t. It can

take two forms: (1) v = t, which semantically means that v is assigned to be equal t (also

called a codesignation constraint), or (2) v != t, which semantically means that v is

constrained to never take the value t (also called a non-codesignation constraint).

Definition 4-6. A causal link is a relation between an atom ai appearing in either the

positive or negative effects set of a step si and an atom aj appearing in the precondition

set of a step sj. The atoms ai and aj must be equivalent, and si must be constrained to

come before sj. Syntactically, a causal link is written si a sj. Semantically, a causal link

reflects that the effect ai of si is being used to support, or establish, the precondition aj of

sj. One can read a causal link as “si causes a to become true for sj”

www.manaraa.com

74

Definition 4-7. A partial-order plan is a 4-tuple ρ = (S, , CL, B) of sets of POP plan

elements (Definition 4-14), where: S is a set of steps,  is a set of ordering constraints

involving only elements appearing in S, CL is a set of causal links involving only

elements appearing in S, and B is a set of binding constraints (empty when planning

without the use of variables).

I do not list flaws (Definition 4-9) as part of the tuple defining a partial-order plan

because flaws are derived from the elements 4-tuple; however flaws are often included in

the plan data structure for speed efficiency reasons, and I also refer to flaws as ‘plan

elements’ (Definition 4-14) when not ambiguous.

Definition 4-8. A linearization of a partial-order plan (S, , CL, B) is a totally-ordered

sequence of the steps contained in S that is consistent with the ordering constraints

contained in . This is equivalent to a topological sort of the ordering constraints.

Definition 4-9. A partial-order plan may contain flaws of only two types: open

preconditions (Definition 4-10), and threats (Definition 4-11).

Definition 4-10. A flaw of type open precondition occurs when a step sj in a partial-

order plan has a precondition p, written p@sj, for which no causal link s p sj exists. In

the initial partial-order plan, all the preconditions of s are the only flaws in the plan.

Definition 4-11. A flaw of type threat occurs when a causal link si p sj and a step s’

exist in a partial-order plan such that s’ has as an effect the negation of p (i.e., p),

written s’  p, and furthermore s’ can consistently, relative to the ordering constraints,

occur between si and sj, written s’ || (si p sj), in a linearization of the plan. This is a flaw

because, without resolution, it would be possible to create a linearization in which one or

www.manaraa.com

75

more preconditions needed for a step are not available in the world state immediately

preceding the application of the threatened step.

Definition 4-12. There are two ways to resolve an open precondition flaw p@sj in a

partial-order plan ρ = (S, , CL, B): (1) Operator instantiation: add to S a new step sr

that has an effect that unifies with p, add the ordering constraint sr < sj to the set, and

finally add the causal link sr p sj to the set CL. Alternatively, (2) Step reuse: non-

deterministically select a step sr from S such that sr has an effect that unifies with p, and sr

can, relative to the ordering constraints, be consistently ordered to occur before sj and;

given this sr, add the ordering constraint sr < sj to the set, add finally add the causal link

sr p sj to the set CL.

Definition 4-13. There are three ways to resolve a flaw of type threat s’ || (si p sj):

promotion, demotion, and separation. Promotion resolves the threat by adding sj < s’ to

the set of ordering constraints, if doing so does not violate the consistency of the ordering

constraints (does not introduce a cycle). Demotion resolves the threat by adding the

ordering s’ < si, with the same restriction about not violating the consistency of the

ordering constraints. Separation resolves the threat by adding a binding constraint b,

where b does not violate the consistency of the set of binding constraints B, that prevents

any effect of s’ from unifying with p to the set of binding constraints (this is only

possible when planning with variables), and adding two ordering constraints that force s’

to come between si and sj (for systematicity). For each of the three flaw resolutions, a

resolution is only applicable if its modification to the partial-plan does not violate the

consistency of the ordering constraints, nor the binding constraints.

www.manaraa.com

76

Definition 4-14. Given a partial-order plan ρ = (S, , CL, B), and the set of flaws F

extant in ρ, a POP plan element refers to a member of any one of the set of steps, set of

ordering constraints, set of causal links, set of binding constraints, or flaws (unsupported

preconditions and threats) extant in ρ. Plan elements also refer to any of the parameters,

preconditions or effects of a step, any action provided in the domain.

Definition 4-15. A refinement to an incomplete partial-order plan ρ = (S, , CL, B) is

the resolution, according to Definition 4-12 and Definition 4-13, of any single flaw in ρ.

A plan without any flaws (a complete plan) cannot be refined. Partial order causal link

(pocl) planning does not add elements to S, , CL, B except for the express purpose of

resolving a flaw, although in general, the plan space may be explored without this

restriction (with consequences to algorithmic systematicity).

There are four refinement types, add-step, add-order, add-link, add-binding, each of

which refers to adding an element to the correspondingly named set. Partial-order

planners use these refinements in order to address flaws by progressively adding elements

to the null plan until a complete plan is found. In order to ensure the correctness of

solutions returned, one is not permitted to add elements directly to the set of flaws (this

can only be done indirectly, by adding to the other four sets defining the partial-order

plan).

Definition 4-16. The initial partial-order plan, also called the null plan, given a

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning

domain, consists of the initial step s0 and goal step s , and an ordering constraint that

forces s0 to come before s in any solution.

www.manaraa.com

77

Definition 4-17. A partial-order plan ρ is complete if and only if it contains no flaws, and

the sets of ordering and binding constraints are consistent. A linearization of a complete

partial-order plan is guaranteed to be a solution to the classical planning problem for

which it was generated, due to the definition of plan refinements.

The algorithm for heuristic partial-order planning is shown below, followed by a

detailed explanation.

Procedure HPOP(Ψ)

Input: a classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a

classical planning domain, s0 is a finite set of ground atoms describing the

initial world state of the problem, and g is a finite set of atoms that define the

problems goals.

Output: a complete partial-order plan for (Ψ) or fail

1. frontier  { nullPlan(Ψ) }

2. while frontier is not empty do

3.  heuristicSelectPlan(frontier, Δ) //backtrack point (AND?)

4. remove from frontier

5. if has no flaws then

6. return

7. else

8. flaw  heuristicSelectFlaw(Δ) //NOT backtrackable (OR?)

9. add all resolutions of flaw to frontier

10. return fail

Figure 4.1 Pseudo-code of HPOP

Figure 4.1 presents the pseudo-code for POP planning with heuristics (HPOP), which

is presented in a fashion similar to that of Williamson and Hanks 1996, (for an excellent

discussion of the importance of domain-independent heuristics for both plan and flaw

selection POCL planning, and an empirical evaluation of several techniques for doing so,

see Younes & Simmons 2003), with the exception of notation changes that I made to be

consistent with the definitions already presented. It receives as input a classical planning

problem Ψ (Definition 3-14).

www.manaraa.com

78

It outputs a complete, partial-order plan (Definition 4-17) for Ψ or fail if none is

found. HPOP maintains a list of partial plans frontier, which at the beginning contains the

initial plan (line 1, Definition 4-16). Line 2 begins an iteration that will continue while

there are partial plans in frontier and the solution has not been found (line 6). Line 3

selects a plan in frontier based on a heuristic selection, such as selecting the plan in

frontier that has the fewest open condition flaws (Definition 4-10). If this plan has no

flaws (Definition 4-9), it is returned and the process is terminated (line 5-6). Otherwise,

all possible refinements (Definition 4-15) of flaw flaw (selected heuristically) in plan

are computed and added to frontier (line 8-9); an alternative to adding all refinements of

flaw flaw in plan to the search frontier of plans frontier is to make a backtrackable

selection of a single flaw resolution strategy of flaw to perform, so long as each

alternative flaw resolution strategy is guaranteed to be considered once and only once

upon backtracking. Note that line 8, the selection of flaw, is not a backtrack point given

that, by definition, all flaws in a partial-order plan must be resolved before a solution can

be obtained; the selection of which flaw to resolve can have a profound effect on the

efficiency of the search process, but the order of doing so neither effects the algorithm’s

systematicity nor completeness. Furthermore, the selection of which partial plan to refine

(line 3) amounts to committing to one particular resolution added to frontier (line 9)

during a previously resolved flaw (line 8). The now-refined plan is removed from

frontier in line 4. When frontier contains no plans, a failure is returned (line 9). For speed

efficiency reasons, the set of flaws is usually incrementally maintained in a data structure

for each partial-order plan, rather than doing the computationally expensive task of re-

computing the flaws whenever they are being checked.

www.manaraa.com

79

Many domain-independent strategies exist to guide refining partial-order plans; these

strategies are used to guide the heuristic selection of the next plan to refine (line 3), and

to guide the heuristic selection of the next flaw to resolve (line 8). For example, some

simple strategies call for solving all open conditions first and then solving the threats (ie

select open-condition flaws until only threats remain). Other, more sophisticated

strategies balance between resolving the causal threats and the open conditions. Partial-

order planning using these strategies has been empirically shown to perform slower than

other more recent first-principles planners such as those that use planning graphs or

heuristic planners. Recently, heuristics have been devised for POP that have resulted in

comparable performance results with other state-of-the-art planners. These heuristics

estimate the cost of reaching a complete plan from the current partial plan. Such

estimates are used to compare competing refinements with A* cost functions (Hart et al.,

1968) or other heuristic cost functions (Younes & Simmons, 2003). Planning graphs have

been used to estimate the cost of refining the current partial plan into a complete plan

(Blum & Furst, 1997). The heuristic estimate is obtained by removing all negative effects

from the actions and using planning graphs to obtain a solution for this relaxed problem

(e.g., (Hoffmann & Nebel, 2001)). A similar process has been developed for POP

planning with adjustments to account for the fact that POP does not maintain an explicit

world state, whereas totally-ordered planners (like FF) do (Nguyen & Kambhampati,

2001). For this work I unsuccessfully attempted to use the heuristic POP planner VHPOP

(Younes & Simmons, 2003), which is freely available for download and has been used to

build a heuristic adaptation POP planner (van der Krogt & Weerdt, 2005) and a

probabilistic conformant POP planner (Onder et al., 2006). VHPOP is both well-

www.manaraa.com

80

conceived and well-implemented – it earned the title “Best Newcomer” in the third

International Planning Competition (held at AIPS-2002). The following is a quote from

Hakan L. S. Younes (Younes, 2006), which sums up nicely the unique position his

system holds in the modern history of partial-order planning:

Entering a partial order planner into the planning competition was a

gamble. I almost felt that the fate of this once dominating planning

paradigm was resting on my sholders [sic]. Had VHPOP performed

poorly, it might have thrust partial order planning back into darkness.

Instead it earned me recognition as Best Newcomer and put partial

order planners in the spotlight once again, an achievement that

crowned my two-year effort with the planner.

I found it difficult to modify the codebase of VHPOP to suit my research needs for

this dissertation, but was enlightened by the POP planning subtleties revealed in Youne’s

implementation. I instead wrote DCPOP and HIEPPR-POP in java, making some

sacrifice in speed in exchange for portability and impact. A big thanks is owed also to the

creators of JavaFF (Coles et al., 2008) for their PDDL parser and STRIPS data structures

– these core classes only required minimal changes for my needs and, as advertised, I

found their implementation an excellent basis for extension.

4.2 Domain Configurable Planning With Refinement Rules

This section presents the core of the algorithm I developed for this dissertation.

4.2.1 Partial-Order Plan Refinement Rules

The plan adaptation approach I present in this dissertation draws much inspiration

from existing research in domain-configurable planning. In this form of planning,

domain-specific knowledge enhancing the action schemas is given. This knowledge is

used to guide the planning process which, like first-principles planning, generates a plan

www.manaraa.com

81

from scratch. Examples of state-space domain-configurable knowledge structures include

HTN methods in SHOP (Nau et al., 1999) and temporal logic rules in TLPLan and

TALPlan (Bacchus & Kabanza, 2000; Kvarnström, & Doherty, 2001). Domain-

configurable planners have been shown to solve problems more quickly and to scale

much better with problem size than first-principles planners. Because of their scalability,

their increasing number of applications, and their ability to drop classical planning

assumptions, domain-configurable approaches are believed to be closing the gap between

academic research in AI planning and real-world applications [Nau et al., 2005].

Consequently, the technique I developed is akin to domain-configurable planning in that

it uses domain-specific knowledge to guide the planning process, but is unlike most

domain-configurable planning in that it can reuse previous planning solutions in addition

to planning from scratch. One of the crucial research challenges of this work is how to

represent the domain-configurable plan adaptation knowledge. Before presenting my

formalism, I first discuss two notable domain-configurable knowledge formalisms, HTN

methods and temporal logic rules.

HTN methods are used to sketch the underpinning of the solutions by indicating how

and when high-level tasks are decomposed into simpler tasks. Methods use applicability

conditions that are evaluated against the current state of the world, which is maintained at

all times by the forward hierarchical planning process followed by the SHOP planner.

Compound tasks are further decomposed until primitive tasks, which are accomplished

by actions, are generated. Applying the actions transforms the current state. The SHOP

planner maintains a totally-ordered plan that indicates how to transform the initial state

into the current state. Hence, SHOP methods can be seen as domain-configurable

www.manaraa.com

82

knowledge on top of a forward state-space search process. For example, in the

transportation logistics domain, a HTN method might check if the location of a package

in the current world state (not plan state) does not match the desired goal location and if

so call some suitable subtasks to move this package.

Temporal logic rules are used in TLPlanner and TALPlanner in a forward state-space

search process. These rules use temporal logic modal operators that express relationships

between a state and subsequent states, and are used to define a prune function that detects

and cuts unpromising nodes (i.e., states) in the state space. For example, a rule might

encode the following condition: “Do not move a block if its current position is consistent

with the goal configuration”. If the planner reaches a state S where one such block has

been moved from a previous state in which its location was consistent with the goal

configuration, then the rule will trigger and prune S from the search space.

Applicability conditions in these systems refer to the state of the world and the

consequence of domain knowledge can be either to prune out world states (e.g. TLPlan)

or to constrain the subsequent applicable HTN methods (e.g. SHOP). For the purposes of

the refinement rules presented in this dissertation, because HIEPPR-POP uses a partial-

order plan representation, the algorithm needed knowledge whose applicability

conditions refer to the state of the plan rather than the state of the world, and therefore

whose consequence prune out incomplete partial-order plans. This is an important

distinction because given a partial-order plan, computing the valid conditions for any

point in the plan is an intractable problem (Chapman, 1987). Furthermore, I would like to

be able to explicitly tell the partial-order planner which refinements to take to modify the

www.manaraa.com

83

current plan. Therefore, the algorithm presented herein uses domain-configurable partial-

order knowledge encoded and interpreted according to the following definitions.

Definition 4-18. A DCPOP refinement rule precondition rrp = (+|)<POP plan

element>, given a classical planning domain Δ = (C, P, O), rrp is syntactically a plus or

minus, followed by any POP plan element (Definition 4-14) that might exist in any

partial-order plan generated by a classical partial-order planning process operating on Δ.

The semantics for plan elements remains unchanged.

The semantics of a refinement rule precondition are defined relative to a partial-order

plan ρ = (S, , CL, B), and the set of flaws F extant in ρ as follows: the precondition

rrp is true when preceded by a plus, relative to ρ, if and only if the POP plan element in

rrp is an element of ρ or F and false otherwise; the precondition rrp is true when

preceded by a minus, relative to ρ, if and only if the POP plan element in rrp is not an

element of ρ nor F and false otherwise.

Because of the verbosity of the parsable form of plan elements, I will continue to use

the shorthand representations used up to this point for the remainder of the dissertation.

However, in any implementation of an algorithm using rules, there must be a

representation for each plan element. The following is the syntax I found useful:

 an open condition: (openCondition <atom> <step>) and (openCondition

<variable> s[g]),

 a threat: (threat <link> <step>)

 a precondition that may or may not be supported by the effect of another step: (

precondition <atom> <step>) and (precondition <variable> <step>)

www.manaraa.com

84

 an effect: (effect <step> <atom>) and (effect <step> <variable>)

 an ordering constraint: (order <step> <step>)

 a step: (step <step> <operator head>) or (step <step> <variable>)

 a link: (link <step> <atom> <step>) or (link <step> <variable> <step>) or (

link <effect> <open condition>)

Definition 4-19. A DCPOP refinement rule effect rre = (do:|undo:) <POP plan

refinement>, given a classical planning domain Δ = (C, P, O), rre is syntactically a ‘do:’

or ‘undo:’, followed by any POP plan refinement (Definition 4-15) that might be applied

to a partial-order plan generated by a classical partial-order planning process operating on

Δ. The syntax and semantics for plan refinements remains unchanged.

The semantics of a refinement rule effect are defined relative to a partial-order plan ρ

= (S, , CL, B), and the set of flaws F extant in plan ρ as follows: the effect rre is

applied to ρ by performing the plan refinement in rre when preceded by a ‘do:’, or

removing the plan refinement from ρ when preceded by an ‘undo:’. When step s is

deleted (i.e., by an undo) from ρ, any ordering constraint or causal link connecting

to/from s is also removed. When an ordering constraint, a causal link, or a binding

constraint is deleted from ρ, the sets of plan elements may need to be updated. The choice

of how (for example, computing the transitive closure of the ordering constraints, or

removing all instances of a deleted variable from the binding constraints) and when (for

example, after each effect, or after applying all effects belonging to a single applicable

rule) to update the elements of ρ and F is left as implementation detail, but can have a

profound effect on the time taken to apply refinement rule effects.

www.manaraa.com

85

Definition 4-20. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*, is

syntactically an ‘if’, followed by one or more refinement rule preconditions, followed by

a ‘then’, followed by one or more refinement rule effects.

The semantics of a refinement rule are defined relative to a classical planning domain

Δ = (C, P, O), a partial-order plan ρ = (S, , CL, B) derivable in a classical partial-order

planning process operating on that domain, and the set of flaws F extant in ρ as follows:

the rule is applicable to ρ if and only if every rrp appearing in the ‘if’ part is true in ρ,

and inapplicable otherwise. There may be multiple ways to make the preconditions of a

rule drr true, and to ensure systematic search this is handled as a backtrack point. An

applicable rule drr can be applied to a partial-order plan ρ by applying all of the effects

of drr to ρ in the order that they appear in the rule. Like the preconditions, there may be

multiple ways to apply the effects of a rule, and this is also a backtrack point in the search

space.

Definition 4-21. A DCPOP planning domain DPD = (Δ, DRR) is a tuple containing a

classical planning domain Δ = (C, P, O), along with a list DRR of one or more DCPOP

refinement rules drr written for Δ.

Definition 4-22. A DCPOP planning problem DPP = (Ψ, DPD) is tuple containing a

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning

domain, along with a DCPOP planning domain DPD = (Δ, DRR).

The conditional, “if”, part of a rule is a conjunction of one or more POP plan elements

(Definition 4-14: steps, links, bindings, ordering constraints, and flaws). These POP plan

elements are preceded by either a plus or a minus. The consequent part, “then”, is a

www.manaraa.com

86

sequence of POP plan refinements (Definition 4-15: add step, add link, add order, add

binding), preceded by do or undo symbols. The semantics of a rule are as follows. The

rule is satisfied if each of the POP plan elements preceded by a plus sign occurs in the

partial-plan being refined, and none of the POP plan elements proceeded by the minus

sign occur in the partial plan. The consequent part indicates each of the POP plan

refinements to add, if it is preceded by a “do”, or to retract, if it is preceded by an “undo”.

The POP domain-configurable (refinement) rules are a natural extension of POP

refinements and in fact all POP refinements can be expressed using these rules. For

illustration purposes the rules in Table 4.1 encode the POP plan refinement strategies that

solve a flaw of type threat:

if +(st || (sp p sc)), ¬(st < sc)

then do: sc  st

PROMOTE

if +(st || (sp p sc)), ¬(sp < st)

then do: st  sp

DEMOTE

if +(st r || (sp p sc)), ¬(p = r)

then do: SEPARATION

SEPARATE

Table 4.1 DCPOP rules encoding the three ways to resolve flaws of type threat.

The condition (st || (sp p sc)) is not directly a POP plan element but can be derived from

plan elements by using Horn clauses. I used horn clauses to simplify conditions in the

conditional part of the rule. This has been shown to be quite useful to simplify domain

descriptions in domain-configurable planners such as SHOP as well as for first-principles

planners. Among the conditions that can be defined by Horn clauses are same(?x,?y) and

different(?x,?y) indicating that two variables take the same (or different) value. In this

dissertation I instead write ?x = ?y (or ?x ?y) for readability. I also use Horn clauses to

compute the relation s < s’ between any two steps to indicate that for any linearization of

the plan, step s will occur before step s’.

www.manaraa.com

87

It is similarly possible to encode the POP plan refinement strategies that solve a flaw

of type open precondition as refinement rules:

if + p@sc, + sp p, ¬(sc < sp), sp ≠ sc

then do: sp p sc, sp < sc

REUSE//binding made explicit?

if + p@sc, + Op p

then do: sp = Op, sp p sc, sp < sc

INSTANTIATE

Table 4.2 DCPOP refinement rules encoding the two ways to fix open conditions.

For the work in this dissertation, the goal is not to use POP rules to express domain-

independent refinements such as the ones shown in Table 4.1 and Table 4.2, but rather

domain-specific refinements and retractions modifying an existing plan. That is, rather

than leaving the selection of flaw (line 8 in Figure 4.1) and selection of which flaw

resolver’s children to explore (line 3 in Figure 4.1) to a non-deterministic or domain-

independent heuristic choice, I seek to capture domain-specific rules that govern both

which flaw (or flaws) to operate upon, and how specifically to address them. These

domain-specific rules augment the input to the domain-independent search process,

yielding the domain-configurable planner I sought to create.

There are two classes of DCPOP refinement rules: progressive rules and regressive

rules. Distinguishing between these two classes of rules aids the systematic search of the

algorithm.

Definition 4-23. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*

(Definition 4-20), where rre is a refinement rule effect (Definition 4-19), drr is called a

regressive rule when every effect in drr is prefixed with an undo; thus rules of this type

only modify a given plan by retracting POP plan refinements (Definition 4-15).

Definition 4-24. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*

(Definition 4-20), where rre is a refinement rule effect (Definition 4-19), drr is called a

www.manaraa.com

88

progressive rule when every effect in drr is prefixed with a do; thus rules of this type

only modify a given plan by adding POP plan refinements (Definition 4-15).

(1)
if + (at ?pac ?loc) @ sg

 s0  (package ?pac)
 sp  (at ?pac ?loc)

sp  (at ?pac ?loc) sx

sg sp
then do:

 sp  (at ?pac ?loc) sg

(2)
if (at ?pac ?dest) @ sg
 s0  (package ?pac)

 s0  (in-city ?dest ?city)

 sp  (at ?pac ?start)

 s0  (in-city ?start ?city)

 sp  (at ?pac ?start) sx

 sg sp

 st  (at ?truck ?start)

 s0  (truck ?truck)

 st  (at ?pac ?loc) sx

then do:

 sload: (load ?pac ?truck ?start)

 sdrive: (drive ?truck ?start ?dest)
 sunload: (unload ?pac ?truck ?dest)
 sload  (in ?pac ?truck) sunload

 sdrive  (at ?truck ?dest) sunload
 sunload  (at ?pac ?dest) sg
 sp  (at ?pac ?start) sload
 st  (at ?truck ?start) sload

 st  (at ?truck ?start) sdrive

Table 4.3 Two progressive refinement rules for the transportation logistics domain

Table 4.3 shows an example of two plausible POP progressive refinement rules in the

transportation logistics domain. These POP rules partially encode the strategy that has

been used in the examples up to this point, which is to try to reuse steps that provide

needed effects rather than add new steps to provide those effects. The first refinement

rule fixes an open condition flaw by reusing a step that places a package where it needs to

be. The first two conditions of the rule check if a package ?pac is required to be at

location ?loc for some step sg (possibly the goal step) in the plan. The third condition

finds a step sp (possible the initial step) that establishes the package at that required

location; note that once a variable is bound to a value, the matching process no longer

treats it as a variable that needs filling. The fourth condition verifies that there is no other

www.manaraa.com

89

step using the required effect of sp, in order to avoid creating threats that need to be

resolved later in the planning process. The final condition ensures that sg is not already

constrained to come before step sp, which would make using sp for sg impossible. This

rule makes a single refinement: it adds a causal link (and ordering constraint) between sp

and sg to resolve the open precondition on sg.

The second POP rule is much lengthier, but reveals a few subtleties of the

representation formalism. In plain words, the rule expresses the following: a package is

not at its destination, but is at a spot where an unused truck is; load the package in the

unused truck, drive to the destination and unload it. The first two conditions find a step

with an open precondition indicating a package has not been delivered. The next three

conditions verify that the package’s starting location and final destination are in the same

city (if this is not true, then the package would have to be flown first). The next

condition, a “not”, ensures that there is no other step in the plan that uses the effect

establishing the package’s start location. Without this guard, it would be possible that

refinements added are either redundant, or worse, introduce a threat that is difficult or

impossible to resolve. The next condition, also a “not”, verifies that the step to provide

the needed effect is not already committed (ordered) to occur after the step that needs to

consume the effect. The final three conditions find a truck that is “available”, meaning

that its location is not being used for any other step. Note also that the final condition

reuses the step named sx; it is always the case that a non-grounded variable appearing in a

“not” condition can be reused later in the conditional list, because it is guaranteed that no

successful binding could be made for it.

www.manaraa.com

90

Rule two makes nine refinements to a plan that matches the conditionals. The first

three refinements are the addition of a load step, drive step, and unload step. The

remaining 6 refinements all add causal links, and the associated ordering constraints to

back them. The first causal link refinement is interesting in that it links an effect that does

not appear in the conditional section of the rule. Because unload actions require that the

package be in the truck being unloaded, and also having just added a load/unload pair, the

newly added effect is immediately linked with the newly added open condition.

Similarly, the next causal link refinement in the rule eagerly supports the (at ?truck

?dest) precondition of the new unload step. The next refinement, sunload  (at ?pac ?dest)

sg supports the open condition that triggered this rule in the first place. The final three

refinements reuse the effects found in the conditional section of the rule to support the

flaws introduced by the addition of the three new actions.

Clearly, the two refinement rules presented above are insufficient for making a

complete plan (having no flaws). This is a highly desirable property as in some domains

it might be difficult to obtain a collection of refinement rules that produce a complete

plan. Consequently, rules can be given for the more computationally complicated details

(e.g., how to achieve the goals), leaving the rest to HPOP, the underlying first-principles

planner. Ideally, the intermediate plan produced from adaptation will be easier to

complete than the initial plan. However, if so desired, a complete set of rules can be fully

encoded to ensure that the resulting plans are complete.

www.manaraa.com

91

4.2.2 The DCPOP Algorithm

Procedure DCPOP(DPP, old)

Input: A DCPOP Planning problem DPP = (Ψ, DPD), with classical planning

problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical planning domain; a

DCPOP planning domain DPD = (Δ, DRR), where DRR is a list of one or more

DCPOP refinement rules drr written for Δ; a partial-order plan old

Output: a complete plan for Ψ or fail

1. adj  adjust-plan(Ψ, old)

2. frontier  { doAllRegressiveRules(DPP, adj) }

3. while frontier is not empty do

4.  heuristicSelectPlan(Ψ , P) //backtrack point

5. remove from frontier

6. if has no flaws then

7. return

8. else

9. R  { (drr, σ) : drr is an instance of a refinement rule in DRR,

 σ is a substitution causing the preconditions of drr to be true

 relative to , and σ is as general as possible) } //backtrackable

10. if R is empty then //do classical POP planning

11. flaw  heuristicSelectFlaw(Δ) //NOT backtrackable

12. add all resolutions of flaw to frontier

13. else //use DCPOP rule

14. δ  nondeterministically choose pair (drr, σ) from R

15. ’  apply all refinement rule effects of δ to

16. add ’ to frontier

17. return fail

Figure 4.2 Pseudo-code of DCPOP

Figure 4.2 presents the pseudocode of my domain-configurable plan adaptation

algorithm on top of HPOP. As with HPOP (Figure 4.1) it receives as input a classical

planning problem Ψ. Unlike HPOP, it also receives the plan to be adapted, old, and the

DCPOP planning domain DPD. The output is a complete plan solving Ψ or fail if none is

found. DCPOP begins by adjusting old relative to (Ψ) (line 1). Adjust plan works by

repeatedly (1) removing a step s that mentions objects in the input plan that are not

mapped into objects in the new problem, and (2) removing any ordering or causal link

constraint connecting to/from s. This is a common step for adaptation in first-principles

www.manaraa.com

92

POP planning (e.g., (Hanks & Weld, 1995; van der Krogt & Weerdt, 2005; Kuchibalta &

Munoz-Avila, 2006)). Then, a set of plans is found by repeatedly applying the regression

rules in DPD until none is applicable (line 2). These plans are added to frontier (line

2), the list of current candidate partial plans to be refined. The next part of the

pseudocode continues iterating while there is at least one candidate plan to be refined and

no solution has been found (lines 3-16). When the list of candidate plans is empty, a

failure is returned (line 17). At each iteration, a candidate plan is selected using the

HPOP heuristics and is removed from frontier (lines 4 and 5). If this candidate plan

has no flaws, it is returned (lines 6 and 7). Otherwise a new partial-plan ’ is computed

by applying an applicable refinement rule to , and ’ is added to frontier (lines 9,

and 14-16). If no refinement rules are applicable to (line 10), then standard classical

POP refinements are added to frontier (lines 11 and 12).

To simplify the presentation and analysis of DCPOP, the choice of which refinement

rule to apply (line 14) is specified as a nondeterministic step. Any implementation of the

algorithm must necessarily be deterministic, and the correct implementation of the

nondeterministic step is as follows:

 If in the course of iteration a plan π is refined with a chosen rule δ from its set

R (line 9) to make a new partial-plan π’, and in a subsequent iteration, π’ is

found to have neither an applicable refinement rule nor applicable classical

refinement, then another iteration is performed on π using an untried element

of its set R.

 If in the course of iteration a plan π has unsuccessfully had all elements of its

set R applied, and furthermore all classical refinements to its heuristically

www.manaraa.com

93

selected flaw have also been explored, then iteration of the algorithm resumes

at (backtracks to) a previous choice point (selection of an untried δ from set R).

There are a few notable elements of the DCPOP algorithm, as compared to the

classical HPOP algorithm presented in Figure 4.1. First, HPOP always begins search

with the initial (or null) plan, whereas DCPOP is designed to begin search with a

previously formed partial-order plan, which places DCPOP in the class of plan adaptation

algorithms. Recall that the motivation for doing so is to reduce the size of the search

space to be explored by exploiting the theory that similar problems have similar solutions

(and therefore it is easier to refine a near-complete solution than generating a new

solution from scratch). Doing so in this context amounts to adjusting the input plan (line

1) such that it contains no elements that would cause forward refinement (least-

commitment) search to fail. Furthermore, DCPOP goes beyond domain-independent

approaches to adjusting the input plan by incorporating domain-specific control strategies

for adjusting the input plan (line 2). For example, a domain expert in transportation

logistics may know that it is best to remove all commitments having to do with planes. In

DCPOP, it is possible to encode rules that would retract all plan elements even

tangentially related to plane scheduling, whereas in domain-independent plan adaptation

frameworks, doing so would be impossible.

The second notable feature of the DCPOP algorithm is that, once an adjusted plan is

created, the search algorithm is very nearly identical to HPOP. In fact, because DCPOP

searches in the plan space (in contrast to, for example, task reduction in state-based HTN

planning), even when there exist no applicable rules (line 10), it is still possible to further

refine the (hopefully) much progressed, candidate partial-plans by applying traditional

www.manaraa.com

94

domain-independent heuristic partial-order plan refinement techniques. This is significant

for two reasons.

First, it allows DCPOP to find solutions to problems even when the set of input rules

is insufficient to do so without applying any other search techniques. That is, the set of

refinement rules need not be complete in order to find a solution. Rather than having

domain engineers laboriously consider ways of fixing all problems that might exist in an

incomplete partial-plan and authoring a correspondingly complete set of rules, a sparse

set of rules can be authored in order to ‘sketch’ how to solve the hard (search space

expensive) parts of finding a solution in a particular domain, while deferring to brute-

force domain-independent search strategies to solve the other flaws. Even when search

must resort to domain-independent approaches, domain-specific search can resume as

soon as more rules become applicable. This eases the notorious knowledge acquisition

bottleneck. For example, running DCPOP without any rules is equivalent to running

HPOP, whereas running DCPOP with a single rule allows for making ‘leaps’ in the

search space whenever that rule becomes applicable. Second, and once again because

DCPOP operates in the plan space, I hypothesize that the incomplete plans may more

easily be extended into solutions than incomplete plans generated by a totally-ordered,

domain-configurable adaptation strategy. This equates to fewer ‘dead-ends’ in the search

space because there are fewer commitments to break than in totally-ordered approaches

(which are far more constrained).

Readers that are familiar with ‘plan critics’ may note the similarity of DCPOP

refinement rules to the knowledge constructs used in such seminal planners as SNLP and

O-Plan. Indeed, the notion of critics was once a popular way of expressing search control

www.manaraa.com

95

strategies for how to resolve particular types of errors in incomplete plans. These critics

paved the way for understanding what came to be known as the two fundamental flaws in

partial-order planning (unsupported conditions, and threats), and the minimal and

sufficient ways to resolve them. Because of the attractiveness of the properties of sound,

complete, and systematic search algorithms (notably, getting your planning algorithm

published), these flexible critics were in effect discarded in exchange for the domain-

independent search strategy that is captured by HPOP (on account of the minimal,

necessary, and sufficient nature of how to resolve those fundamental flaws). The

fundamental argument of this dissertation is that, for the most part, planning approaches

have unnecessarily and deleteriously discarded the flexibility and efficiency of applying

‘unsystematic’ critics to quickly traverse portions of a planning search space (and thereby

making hard problems solvable), in exchange for critics that provably force an expensive

(yet complete) exploration of the search space that is only useful for the smallest of

planning problems. I argue that combining necessary and sufficient refinements (classical

HPOP) with ‘rule-of-thumb’ knowledge (DCPOP refinement rules) yields an approach

that exploits the strengths of both while ameliorating their respective weaknesses: HPOP

is strong in its systematic search, and weak in solving large problems; unstructured critic

evaluation and application is strong in its ability to solve large problems (with complete

hand crafted rules), but weak in systematically exploring ways of fixing all types of

problems (when the rules are incomplete).

www.manaraa.com

96

4.3 Properties of the DCPOP Algorithm

In this section, I present criteria that determines the soundness (i.e., that all solutions

generated are correct), correctness (the ability of the algorithm to correctly execute

refinement rules according to their semantics), completeness (whether or not at least one

solution will be found whenever a solvable problem is given), and complexity (an

abstract formulation of worst-case running time for the DCPOP algorithm to solve a

problem, relative to input expert knowledge).

4.3.1 Soundness

An algorithm that is sound is one that always generates correct solutions (relative the

definition of the problem the algorithm solves) – that is, the output of a sound algorithm

must always solve the input problem, or report the failure to do so.

Definition 4-25. Given a classical planning problem Ψ (Definition 3-14), and a collection

of refinement rules DRR (Definition 4-20), a planning algorithm is sound if and only if,

all answers returned for Ψ by the algorithm using DRR are guaranteed to be solutions to

Ψ, according to Definition 3-16.

The previous definition not only states that soundness means never returning a wrong

answer (and reporting a failure to find a solution when one exists is ok), it also basically

states that solutions generated with the refinement rules and the operators could also be

generated without the refinement rules (i.e., by using the operators only).

Theorem 4-1. The DCPOP algorithm is sound, according to Definition 4-25.

www.manaraa.com

97

Proof. The DCPOP algorithm (Figure 4.2) returns a candidate solution plan in line 7.

It returns a candidate only if the candidate has no flaws. Because a partial-order plan

having no flaws (and consistent sets of ordering and binding constraints) is a solution to

the classical planning problem (Definition 3-16), then the algorithm is sound.

■

4.3.2 Completeness

A planning algorithm is “complete” if, whenever given a solvable problem, that

algorithm will find at least one solution to that problem; if a complete algorithm returns a

failure to find a solution for a given problem, then this problem has no solution. This

notion can be tricky for least-commitment plan-space planning, given that the search

space of the algorithm is infinite. Infinite partial plans can be generated because of the

fact that the planning algorithm can always resolve a flaw of type open precondition by

supporting it with a new step that has a matching effect. Therefore, when analyzing an

algorithm that searches in an infinite space of solutions, the algorithm is considered to be

complete if and only if the solution is guaranteed to be generated (as a leaf node) in the

search process when computational space and processing time are also treated as infinite

resources. As put by Weld 1994, “if a plan exists, does a sequence of non-deterministic

choices [through the algorithm] exist that will find it?”

Definition 4-26. Given a classical planning problem Ψ (Definition 3-14), and a collection

of refinement rules DRR (Definition 4-20), a planning algorithm using DRR to generate

plans is complete if and only if, whenever Ψ is solvable, the algorithm generates a

solution.

www.manaraa.com

98

Theorem 4-2. The DCPOP algorithm is not complete, according to Definition 4-26.

Proof. In order to prove the completeness of the DCPOP algorithm, it must be shown

that, for an input solvable classical planning problem Ψ, at least one of DCPOP’s

execution traces returns a solution. Additionally, there are several dimensions along

which to consider the completeness of DCPOP, and all possible combinations of values

for each dimension must be provably complete in order for DCPOP to be provably

complete in general. The dimensions, and the values they can take, are as follows:

 Whether or not the plan to be adapted, old is the null plan for Ψ

 Whether or not the retraction rules in the set of DCPOP rules DRR can generate

the null plan for Ψ

 Whether the refinement rules in DRR are always applicable, sometimes

applicable, or never applicable

Case 0: First, we assume that the input plan to be adapted, old, is equivalent to the null

plan for Ψ. That is, no plan adaptation is to occur.

In this situation, no retraction rules will be applicable because retraction rules can only

remove plan refinements, and the null plan contains no refinements that can be removed

(by definition); thus, whether or not the retraction rules present in DRR are able to make

the null plan for Ψ has no effect on the completeness of this case.

That leaves a final consideration for Case 0, which is the effect on the search of the

refinement rules in DRR.

 In the event that there are no refinement rules in DRR, or in the event that none

of the refinement rules are ever applicable, line 10 of DCPOP always evaluates

to true. Given that in Case 0 search begins with the null plan and neither

www.manaraa.com

99

retraction nor refinement rules are ever applicable, search under these

conditions is equivalent to HPOP (that is, the while loop is equivalent to that of

Figure 4.1). Because HPOP is complete, DCPOP is also complete under these

restrictions.

 In the event that there are refinement rules in DRR that are applicable, recall

that after all applicable refinement rules (under all valid substitutions) are

applied to a candidate partial-order plan in the frontier, the algorithm

backtracks to classic HPOP flaw resolution strategies for that partial-order

plan. Thus, either the application of refinement rules alone will generate the

solution node in the search space, or the application of classical HPOP flaw

refinement alone will generate the solution, or an interleaving of rule

application and HPOP flaw refinements will do so. Therefore, DCPOP is

complete under these considerations.

Because we have considered all variations of inputs under the restriction that the input

plan to be adapted is equivalent to the null plan, we can now assert the following:

DCPOP is complete if the input plan to be adapted is equivalent to the null plan

(Definition 4-16) for the given classical planning problem.

Case 1: Having proven all completeness results under the assumption that the plan to be

adapted, old, is equivalent to the null plan for the input classical problem Ψ, the next case

to consider is when old is not equivalent to the null plan for Ψ. That is, DCPOP is asked

to perform plan adaptation. For Case 1, we also make the assumption that the retraction

rules, when applied (line 2), result in the null plan for Ψ.

www.manaraa.com

100

In this situation, application of the retraction rules will result in the null plan for Ψ.

This has the effect of discarding plan adaptation for the first-principles HPOP approach.

Because in Case 0, it was proven that DCPOP can always generate a solution when

starting from the null plan for Ψ, this case is also complete.

Case 2: The final case to consider is when old is not equivalent to the null plan for Ψ

(plan adaptation occurs), and, unlike Case 1, the retraction rules when applied (line 2) do

not result in the null plan for Ψ (non-trivial plan adaptation).

In this case, DCPOP might not generate solutions for problems where a first-principles

POP plan adaptation algorithm will generate one. Because DCPOP will only perform

retraction as indicated by the POP rules (line 2), and for this case it is assumed that the

partial-plan resulting from applying the retraction rules is not the null plan, the frontier at

the first iteration will contain a single partial-plan π’ containing commitments on some or

all of the elements of its steps, ordering constraints, causal links, or binding constraints. It

is trivial to construct a situation where any one of these constraints results in a flaw that

has no resolution (for example, a threat that cannot be resolved consistently via

promotion, demotion, or separation). Therefore, DCPOP is not guaranteed to be complete

under the restrictions imposed in this final case.

Because Case 3 shows a situation where DCPOP is not provably complete, DCPOP is

not complete in the general case.

■

A systematic plan adaptation planner (e.g., Hanks & Weld (1995)’s or van der Krogt

& Weerdt (2005)’s algorithms) could theoretically generate one as they will

www.manaraa.com

101

systematically retract steps from the adjusted input plan, eventually retracting all

constraints until the null plan is reached (if necessary).

The following lemmas summarize the completeness results from the proof of Theorem

4-2.

Lemma 4-1. DCPOP is complete if the input plan to be adapted is equivalent to the null

plan (Definition 4-16) for the given classical planning problem.

Proof. See Case 0 in the proof of Theorem 4-2. ■

Lemma 4-2. When given a solvable problem and a set of retraction rules in DRR that,

when applied, result in the null plan for the input classical problem Ψ, DCPOP is

complete.

Proof. See Case 1 in the proof of Theorem 4-2. ■

Lemma 4-3. When given a solvable problem, DCPOP is not guaranteed to be complete

when the input plan to be adapted is not the null plan, and the retraction rules do not

cause the search frontier to be initialized with the null plan, regardless of whatever

refinement rules DRR may contain.

Proof. See Case 3 in the proof of Theorem 4-2. ■

4.4 Discussion

Other researchers have proposed plan adaptation algorithms based on heuristic

planning (Koenig et al., 2002; Boella, & Damiano, 2002; van der Krogt & Weerdt, 2005).

However, unlike DCPOP, these algorithms modify the input plan by first removing steps,

www.manaraa.com

102

followed by a call to a heuristic planning process to generate a complete plan from the

modified plan. This form of adaptation has shown improved performance over that of

state-of-the-art first-principles planners but is still far from the performance of domain-

configurable first-principle planners. It is relevant to this discussion to point out that, as

of today, the best performing POP planners use heuristics, and that no domain-

configurable POP planner exists. This is in itself significant because reasoning with

partial-order plans is considered crucial in many real-world situations (Ghallab et al.,

2004).

At this point a clarification is needed. There is a variant of SHOP, called SHOP2,

which allows defining a partial order between the tasks to achieve (Nau et al., 2001). The

way SHOP2 operates is to select the next task to achieve that is consistent with the partial

order. The selected task is decomposed all the way to primitive tasks, which are satisfied

by actions. These actions are used to advance forward the current world state. The

process repeats itself by selecting the next task. At all times, the partial solution

constructed is a totally-ordered plan consisting of all primitive tasks in the order they

were generated, as is the case with SHOP. Although this allows for interleaving actions

achieving different tasks, unlike POP, actions in SHOP2 appear in the plan in the order

they were generated. This is analogous to the way non-linear total-order planners such as

Prodigy operate; resulting plans can interleave actions achieving different goals but the

planner commits to the order of the action at the point that the actions are generated

(Veloso et al., 1995). The crucial characteristic of POP is not the fact that actions can be

interleaved to achieve different goals but that POP does not commit to an action ordering

unless it is necessary (Kambhampati et al., 1996).

www.manaraa.com

103

Another clarification should be made about HTN planners such as UMCP (Erol et al.,

1994b) which pre-dated SHOP. These planners decompose a task into a plot, which

indicates the resulting subtasks and their constraints including ordering constraints and

causal links. Like POP, UMCP can generate partially ordered plans. But unlike POP,

UMCP does so in a hierarchical fashion by reasoning on high-level tasks. UMCP and

other HTN planners such as O-PLAN (Currie & Tate, 1991) and SIPE (Wilkins, 1988)

were also in part motivated by what later came to be known as domain-configurable

planning; knowledge, in the form of HTNs, was provided to guide the planner. However,

the performance of general HTN planning can be very slow because of the multiple

interactions between the tasks at different levels in the hierarchy. Also, this knowledge is

crucially different from that of DCPOP in that rules in DCPOP can make any kind of

refinement, whereas the control knowledge in the other systems is focused on step

addition and ordering only (see Section 5.4 for more details about how my algorithms

relate to UMCP). Currently, research on the general form of HTN planning is almost non-

existent. It is conceivable that the techniques that I developed for this dissertation could

be used to improve the performance of general HTN planning, and would be an

interesting avenue to explore as future work.

There are a number of research challenges that still need to be addressed. First, the

challenge of selecting among alternative POP rules must be discussed. This refers to line

9 of DCPOP. The pseudocode applies all applicable rules and collects all resulting plans.

The other two alternatives, selecting the first applicable rule or using other more

sophisticated criterion to select one rule, will need to be investigated to formulate

possible trade-offs between these alternatives.

www.manaraa.com

104

Challenges involving the use of POP rules. First, I studied ways to detect applicable

POP rules and to apply them to modify a partial-order plan. This required developing

methods to quickly evaluate the conditional part of POP rules. In my work with HTN

plan adaptation Repair-SHOP [Warfield et al., 2007], we developed a structure to quickly

identify the first inconsistent action of the plan, which was much faster than checking

every action beginning from the first until the inconsistency is found. DCPOP has several

analogous data structures that help evaluate POP rules in the current plan. Second,

multiple POP rules might be applicable to the same plan. There are three possible

approaches when this happens. One is to apply POP rules simultaneously to obtain

alternative plans. Many planners such as VHPOP follow a similar strategy in that they

compute all possible one-step POP refinements that can be made to the current plan

(Younes & Simmons, 2003). This works surprisingly well provided that adequate

heuristics are defined to select the next plan to refine among several candidates. The

second alternative is to leave to the domain expert to encode the rules so that such

conflicts are minimized and list the order in which these rules are to be evaluated; that is,

during problem solving the first applicable rule is selected, and applied. This is the

approach followed by the SHOP HTN planner. A third alternative approach is to use rule

de-conflicting techniques to select appropriate rules (e.g., Chapter 9 of Russell & Norvig

(2002)).]

www.manaraa.com

105

5 Hierarchical partial-order plan refinement

The refinement rules presented in Chapter 4 form the basis for controlling, in a manner

consistent with the instructions encoded by a domain expert, the refinements that a

partial-order planner should make under certain conditions. I’ve shown that this domain-

configurable control knowledge is unique in how it controls the underlying planning

algorithm DCPOP, and furthermore, that the expert domain-configurable control

knowledge need not be complete for the algorithm to find a solution. Additionally, results

of experiments described in the next chapter reveal that refinement rules can be used to

adapt plans without a tradeoff that has long been considered “inescapable” by case-based

reasoning researchers.

But in what situations does this encoding of rules, and their use in the DCPOP

algorithm, fall short of ideal, and how can these limitations be addressed? That is, how

effectively can rules model domains (how little or how much knowledge is needed to

have a useful impact on plan generation, in terms of the ratio of the number planning

decisions guided by rules to the number of planning decisions made by first-principles,

domain-independent planning operations), how efficient is the planning algorithm while

using rules (is the process faster or slower than first-principles, and how does it compare

to other domain-configurable planning techniques), and what is the quality of the plans

produced?

There are a few notable limitations in how this rule knowledge is encoded and used in

DCPOP; this chapter addresses how to extend the representation and algorithm to

eliminate these limitations. To do so, I rely upon the notational and computational power

www.manaraa.com

106

of hierarchies, and introduce a new algorithm called HIEPPR-POP – for HIErarchical

Partial Plan Refinements for Partial-Order Plans (pronounced "hyper pop"), which

subsumes the DCPOP approach (all domains that can be encoded for DCPOP can be

encoded in HIEPPR-POP, but not the other way around).

The two main limitations addressed in this chapter arise from refinement rules that

share a prefix of refinement rule preconditions, and rules that share common refinement

strategies. As presented, the refinement rules of the previous chapter require the

following inefficient, and inconvenient limitations:

(1) If two or more rules differ only in a single precondition, each of the common

preconditions must be restated and re-evaluated for each rule. This not only

makes the knowledge encoding process more error prone and tedious, but it also

wastes computation.

(2) If the refinements required by a rule are those that are defined by another rule,

those refinements cannot be reused (ignoring “copy/paste”) – that is, there is no

way for one rule to “refer” to another. Without such a mechanism, the process of

encoding rules is more difficult and error prone than it need be.

Example 5-1. Illustrating first limitation, shared preconditions.

The following is an abstract example of the first limitation, namely the situation where

two or more rules differ in a single precondition.

Suppose there are two refinement rules, Ra and Rb, each of which has 11

preconditions. The first 10 preconditions of Ra and Rb are exactly the same; only the 11
th

precondition differs. Suppose also that neither rule is applicable, because the 11
th

precondition is not satisfied in the current plan by either rule. The DCPOP algorithm

www.manaraa.com

107

would have to, for each of the rules, evaluate the first 10 preconditions in order to find

that the 11
th

 was not satisfied. This situation is only worsened if there are additional rules

sharing the common precondition prefix, or the precondition list is long. In practice, I

found that refinement rules frequently share common preconditions, often being

differentiated by only a few discriminating preconditions. What is needed is a way to

“group” these common preconditions, both for authorial convenience, and algorithm

efficiency.

Example 5-2. Second limitation is the inability to refer to other rules.

The second limitation, having to do with the need to refer to other rules, follows the

motivation of Example 5-1. Suppose that Ra and Rb, from that example, each refine the

plan by adding a new step followed by a number of refinements rn that are the same

between Ra and Rb. As written, the DCPOP algorithm would require that the two rules

replicate the list rn; while this does not introduce a computational inefficiency, it is

certainly an authorial limitation that makes maintaining and debugging the knowledge-

base more error prone. Furthermore, many problems are solvable by combining solutions.

With simple refinement rules, there is no way to explicitly reuse a rule to solve a

subproblem. For example, one can imagine that Ra is a rule to deliver a package within a

city, and Rb delivers packages between cities. To deliver a package between cities, one

first must deliver the package within a city to get the package to an airport, fly the

package to its destination city, and finally deliver the package to its goal location within

the destination city. Naturally, one might attempt to encode the refinements of Rb as first

using Ra (to deliver the package to an airport), then adding a step that flies the package to

its destination city, and finally using Ra once more to deliver the package from the airport

www.manaraa.com

108

to its final destination. This chapter presents a way to encode and reason on rules of this

“hierarchical” form, a methodology that addresses both types of limitations in a single

framework.

Example 5-3. Inefficient use of rules from redundant computation.

Another way to motivate the need for hierarchies is to observe that the refinement

rules of the previous chapter are naïve – each iteration of the search process must re-

evaluate what is true in the plan, regardless of which rules were just applied, and what the

application of those rules implies about the state of the current partial-order plan. For

example, suppose half of the rules of a given domain exist for the sole purpose of

removing unnecessary steps in a plan to be adapted, and half of the rules are for refining

that partial plan after doing all removals. Further assume that all of the “retraction” rules

have been applied to a particular partial-order plan, and only refinements need be made to

complete the partial-plan. The DCPOP algorithm would not be able to skip the evaluation

of the rules that remove steps, instead wasting the computation power to recheck

conditions that the domain engineer knows are no longer relevant (this same limitation is

manifested in Example 5-1 and Example 5-2). What is needed is a mechanism that allows

for more informed search, namely the ability to precisely control which rules are to be

evaluated at varying points in the search process. In this example, a domain engineer

would like to specify that the latter half of the rules should only be applied after all of the

first half of the rules are exhaustively applied (and furthermore that once the first-half of

the rules have been applied, they should never be re-evaluated).

www.manaraa.com

109

5.1 HIEPPR-POP methods

This chapter extends the rule formalism and DCPOP algorithm to support reduced

precondition evaluation and to introduce the ability of rules to refer to one-another, and in

doing so, addresses the limitations shown in the above examples. This new form of

domain-configurable knowledge, which I call “HIEPPR-POP methods” (hereafter

referred to simply as “methods” where the meaning is unambiguous), is used by my

HIEPPR-POP algorithm, which is presented in the next section of this chapter. Because

of the similarities in structure of HIEPPR-POP methods to methods as used in HTN

planning [Erol et al., 1994], I borrow some of the terminology used to describe HTNs

such as “task name”, “method”, “subtasks”, “task reduction”, “primitive task”, and

“precondition-subtask pairs”. In spite of the naming overlap, the HIEPPR-POP algorithm

does not perform HTN planning (see Section 5.4 for a discussion of how HIEPPR-POP

compares to UMCP).

Recall that applicability conditions for domain-configurable planners such as TLPlan

or SHOP refer to the state of the world and the consequence of the hand crafted domain

knowledge can be either to prune out states (e.g. TLPlan) or to constrain the subsequent

applicable HTN methods (e.g. SHOP). For partial-order plans, on the other hand, the

expert knowledge should evaluate applicability conditions that refer to the state of the

plan rather than the state of the world [Ambite et al., 2001; 2005]. This is an important

distinction because given a partial-order plan, computing the valid conditions for any

point in the partial plan (that is, all predicates that may be true in the world state

immediately preceding the application of an action, relative to all linearizations of the

partial-order plan consistent with the ordering constraints) is an intractable problem

www.manaraa.com

110

[Chapman, 1987]. The DCPOP rules presented in the previous chapter provide exactly

this functionality: they allow a domain expert to explicitly tell the underlying partial-

order planning algorithm which refinements are applicable to a partial-order plan.

HIEPPR-POP methods therefore also use partial-order plan elements (in the form of

method precondition evaluation) to constrain their applicability and plan modification.

Like DCPOP rules, the effects of HIEPPR-POP methods can modify the elements of the

sets of steps, ordering constraints, causal links, and binding constraints representing

partial-order plans. Unlike DCPOP rules, methods can constrain which knowledge

constructs (methods) are considered in subsequent applications of the expert knowledge

(in a manner akin to how SHOP methods constrain the evaluation, or applicability, of

subsequent HTN methods in hierarchical task-network planning).

This section formally defines HIEPPR-POP methods; the next section presents an

algorithm that uses the methods to make modifications to partial-order plans. In order to

provide guiding context for the definitions to follow, I first informally describe HIEPPR-

POP methods, deferring the formal presentation of the definitions of each of the parts of

the knowledge structure until the essence of a method is conveyed.

1. (method task: <task>

2. preconditions:

3. [(+/)<POP plan element>]*

4. subtasks:

5. (<subtask>*)

6. [preconditions:

7. [(+/)<POP plan element>]*

8. subtasks:

9. (<subtask>*)])

Figure 5.1 The syntax of a HIEPPR-POP method.

A HIEPPR-POP method m is written and interpreted as follows: m (task t, one or more

lists of [preconditions p, subtasks st]). Where t is a non-primitive task name used in line

www.manaraa.com

111

1, the preconditions p (lines 2 and 3) are a conjunction of one or more POP plan elements

as defined in Section 3.2.2, and st (lines 4 and 5) is a list of mixed primitive and

nonprimitive “subtasks” (the primitive/non-primitive distinction is clarified below). That

is a task t is decomposable by a method m if and only if all of the following are true: (1)

the taskname of t and m are equivalent; (2) it is possible to unify the arguments of t with

the parameter templates in m; and (3) m’s preconditions are true. A task having name t

may have multiple methods with the same name, each differentiated by its parameters,

and list of precondition-subtask pairs.

The <task> t can be decomposed, by m, into the list of subtasks st [<subtask>]* if t

and m share the same name and number of arguments, and if each of the POP plan

elements appearing in p that are preceded by a plus sign occurs in the current plan and

none of the POP plan elements proceeded by the minus sign occur in the current plan.

That is, a method that realizes a task is only applicable if, in its precondition section, all

the elements with a plus are present in the current partial plan, and all those preconditions

with a minus are not. An empty subtask list is evaluated as true, meaning the methods

refinements are trivially realized. For methods that have multiple precondition-subtask

lists, each precondition list is evaluated, top-to-bottom, until one having all preconditions

satisfied is found (at which point the subtasks are applied).

Central to the discussion of HIEPPR-POP methods is the notion of “tasks”, which

come in two forms: “primitive” and “non-primitive”. The semantics of each of these is

carefully explained below. First, what is a task, and how does it relate to refinement

rules?

www.manaraa.com

112

Whereas a constant symbol (Definition 3-1) is used to refer to an object in the

modeled world (e.g. “truck”), and a predicate (Definition 3-5) is used to refer to a

relation in that world (e.g “at-location”), a taskname is used to identify and refer to a

domain-configurable strategy (method) for making changes to a plan (e.g. “deliver-

package”). That is, a task specifies which strategy is to be used, while a method specifies

how the strategy may be employed. In the previous chapter, refinement rules had no need

for names, as it was impossible to “invoke” one rule from another. In this and the next

chapter, I make the case that the addition of tasknames (and algorithmic changes to

support them) is one way to overcome the limitations of DCPOP introduced at the

beginning of this chapter (Example 5-1 through Example 5-3).

The reader may wish to think of a HIEPPR-POP method as a DCPOP rule with a

name – the similarities between the two formalisms will make for an easier understanding

of the definitions to follow, while their differences will lend insight into how the

representation will effect an algorithm using HIEPPR-POP methods.

Definition 5-1. A HIEPPR-POP atom, extends the definition of the classical planning

atom (Definition 3-6) to not only include statements of fact about the modeled world (e.g.

‘(at truck1 ?loc)’, a predicate symbol with arguments matching its arity (Definition 3-5))

but to also include statements of fact about the properties of a partial-order plan derivable

in that domain – plan elements as in Definition 4-7 (e.g. ‘Sx < Sy’, where Sx and Sy are

steps). As with classical atoms, if all arguments are grounded, then the atom is also

grounded. See the discussion following Definition 4-18 on representing plan elements.

Definition 5-2. A HIEPPR-POP term is a HIEPPR-POP variable symbol, HIEPPR-POP

constant symbol, atom (Definition 5-1), or assignment expression (Definition 5-8).

www.manaraa.com

113

Definition 5-3. A HIEPPR-POP task-symbol s is a constant symbol (Definition 3-1), and

is used to unify tasks (Definition 5-4) with methods (Definition 5-7) that accomplish

them. The term task-name may be used interchangeably. Symbol s can be a primitive

task-symbol (Definition 5-5) or non-primitive task-symbol (Definition 5-6).

An example task-symbol is “deliver-all-packages”.

Definition 5-4. A HIEPPR-POP task-atom t is a character sequence having the form (s

t1 t2 … tn) where s is a task-symbol (Definition 5-3), and the arguments t1 t2 … tn are

HIEPPR-POP terms. The task-atom is primitive if s is a primitive task-symbol, and non-

primitive if s is a non-primitive task-symbol.

An example task-atom with an arity of two is “(deliver-package-for-step

p1 ?drivestep)”; note that the task-head deliver-package-for-step is not

preceded by an exclamation point symbol as is done with the heads of actions.

Definition 5-5. A HIEPPR-POP primitive task t is syntactically a ‘!do’ or ‘!undo’,

followed by any POP plan refinement (Definition 4-15) that might be applied to a partial-

order plan generated by a classical partial-order planning process, namely any planning

activity that modifies the elements defining a partial-order plan: the addition or removal

of a plan step, the addition or removal of a causal link, the addition or removal of an

ordering constraint, and the addition or removal of a variable binding constraint.

Continuing the analogy of HIEPPR-POP methods being akin to named DCPOP rules,

a HIEPPR-POP primitive task is akin to a DCPOP refinement rule effect (Definition

4-19).

www.manaraa.com

114

The syntax (with the minor change of prefixing the task-head with an exclamation

point symbol rather than appending a colon to it) and semantics are as indicated in

Definition 4-19 and the discussion that follows it.

Borrowing the same convention as used in SHOP, a primitive task is made more easily

identifiable by preceding the task-head of t with an exclamation mark. Because a

primitive task refers to an irreducible, fundamental aspect of partial-order planning

operations, primitive tasks require no domain expert to define their behavior and as such

are available in any HIEPPR-POP planning domain.

The following are the six primitive tasks allowed in HIEPPR-POP; only three of six

are shown, given that the other three (noted by “!undo” rather than “!do”) are opposite in

function:

 (!do add_step <s> <o>), adds a new step <s> to the plan that is an instantiation

of the operator <o> relative to the parameters specified.

 (!do add_link <s1> <c> <s2>), adds the causal link indicated by the

parameters.

 (!do add_order <s1>  <s2>), adds the ordering constraint indicated by the

parameters.

For example the primitive task (!do add_step s1 (load ?p ?t ?l)) adds a step s1

corresponding to an instantiation of operator (load ?p ?t ?l) in the transportation logistics

domain. As before, and by convention, a name preceded by a question mark indicates a

variable (for example, ?p denotes the variable p). The term s<string> denotes a variable for

steps. I adopted this convention to improve readability but it is still strictly expressible in

first-order logic. So in the example s1 denotes the variable assigned to the step added for

www.manaraa.com

115

the action (load ?p ?t ?l). The scope of a variable is limited to the method in which it

occurs.

A non-prim task is a task for which there exists a method specification in domain with

an equivalent task-head.

Definition 5-6. A HIEPPR-POP non-primitive task is a task (Definition 5-4) for which

there exists a unifiable HIEPPR-POP method definition in the HIEPPR-POP domain file.

That is, whereas primitive tasks (Definition 5-5) are “built-in” to any underlying POP

planning algorithm, non-primitive tasks require a correspondingly named method defined

in the input domain file.

Definition 5-7. A HIEPPR-POP method m is a triple HPM = (taskname, parameter-

templates, precondition-subtask-pairs) in which the task-head taskname (Definition 5-3)

is a constant symbol (Definition 3-1) used for identification and reference purposes,

parameter-templates is a list of parameter templates (Definition 5-8) that allow for the

passing of information between methods, and precondition-subtask-pairs is a list of pairs

psp = (mp, st) where mp is a list of method preconditions (Definition 5-9) and st is a list

of subtasks (Definition 5-10).

The pairs of psp work together to constrain when and which methods get evaluated,

and how a plan is to be modified. Figure 5.1 presents a schema for methods which may

be a useful guide to the coming definitions.

Definition 5-8. A HIEPPR-POP assignment-expression a is syntactically a variable

symbol followed by the symbol ‘=’, followed by a HIEPPR-POP atom (Definition 5-1).

www.manaraa.com

116

Definition 5-9. A HIEPPR-POP method precondition hmp is syntactically a DCPOP

refinement rule precondition (Definition 4-18) rrp = (+|)<POP plan element>, the

constant “true”, the constant “false”, or an expression term that is evaluable to the

values true or false.

Semantically, a method precondition hmp can be either logically true or logically

false, relative to a partial-order plan ρ = (S, , CL, B), and the set of flaws F extant in

ρ. The precondition hmp evaluates to logically true in the following situations, and false

otherwise: (1) hmp is a DCPOP refinement rule precondition rrp that evaluates to true –

that is, in this case, the syntax and semantics are the same as in Definition 4-18 (the plan

element must be an element of ρ or F if preceded by a plus, and must not be present in ρ

nor F if preceded by a minus); (2) hmp is the constant true. The constant false

always evaluates to false.

Applicability conditions. HIEPPR-POP provides a number of built-in applicability

conditions, that is, the precondition elements of p, to facilitate encoding domains; these

conditions are the same as defined in the previous chapter. The core of the theory is that

reasoning on the essential logical elements of set membership of a partial plan is

sufficient. As before, the precondition (parallel s’’ (link s’ s p)) indicates that s’’ can be

consistently ordered between s’ and s given the plan’s ordering constraints. While this is

not directly a member of the essential sets required for capturing POP plan elements it

can be derived from the members of those sets (plan elements); HIEPPR-POP provides

built-in procedures to quickly check this, and other conditions that can be derived from

the essential sets. Another precondition for which I have built specialized checking

www.manaraa.com

117

procedures include (equal ?x ?y) (or (different ?x ?y)) indicating that two variables must

have the same (or different) value.

The most notable of the preconditions with specialized checking procedures is the

relation s < s’ between any two steps, which indicates that for any linearization of the

plan, step s will occur before step s’. HIEPPR-POP uses a data structure to quickly

compute transitive closure of the orderings. HIEPPR-POP also has a primitive condition

(threat C s) which checks if a step s is a threat to the causal link C. This special treatment

is justified by the observation that checking step ordering is a common operation to do on

a partial plan with many pending refinements.

Definition 5-10. A HIEPPR-POP method subtask hms is syntactically a DCPOP

refinement rule effect (Definition 4-19) rre = (do:|undo:) <POP plan refinement>, or a

HIEPPR-POP task-atom.

The semantics of a method subtask are defined relative to a partial-order plan ρ = (S,

, CL, B), and the set of flaws F extant in plan ρ as follows: (1) if subtask hms is a

DCPOP refinement rule effect rre, then it is applied to ρ – that is, in this case, the syntax

and semantics are the same as in Definition 4-19 (briefly restated, the plan refinement is

performed on ρ when preceded by a ‘do:’, and is retracted from ρ when preceded by an

‘undo:’); (2) if subtask hms is a HIEPPR-POP method taskname

Definition 5-11. A HIEPPR-POP planning problem HPP = (Ψ, HPD) is tuple

containing a classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical

planning domain, along with a HIEPPR-POP planning domain HPD = (Δ, HPM).

www.manaraa.com

118

5.2 The HIEPPR-POP Algorithm

Figure 5.2 presents the pseudocode of the HIEPPR-POP algorithm. It begins by

constructing an initial partial plan for the input classical planning problem (S,G) if πold is

null (generative planning), otherwise it assigns to π the input partial plan (Line 1 and 2).

It then calls the HTNDecompose procedure (Line 3). If this procedure returns a partial

plan with no flaws then this plan is returned (Lines 4-5). Otherwise the partial plan is

completed by first principles (Line 6).

Procedure HIEPPR-POP (S, G, T, A, πold)

//input: state S, goals G, task list T, actions A, HIEPPR-POP methods M,

partial-plan πold

//output: a complete plan

1. if πold is null then  initialplan(S,G)

2. else  πold

3.  HTNDecompose(

4. if flaws() = then

5. return

6. else return first-principlesPOP(

Procedure HTNDecompose(

if T then return

2. firstTask(T); T’ reminderTasks(T)

3. if is primitive then

4. If refinement is applicable then

5. perform-refinement(on

return HTNDecompose(’

else return
8. else

9. find applicable method m in M for wrt

if there is no applicable method then

11. return

else

13. obtain subtasks ‘ of m wrt and

14. ’HTNDecompose(’

15. if ’ = then return

16 else return HTNDecompose(’ ’

Figure 5.2 Pseudo-code of HIEPPR-POP

www.manaraa.com

119

The HTNDecompose procedure checks if T is empty, in which case the input plan is

returned (Line 1). It then gets the first task and the remaining tasks T’ of T (Line 2). If

the first task is primitive and its refinement is applicable to the plan (Lines 3-4), then the

refinement is applied to the plan and a recursive call is made with the remaining tasks and

the refined partial plan (Lines 5-6). If the refinement is not applicable then the input

partial plan is returned unmodified (Line 7). If the first task is compound, then applicable

methods are sought to decompose it (lines 8-10). If no method is applicable the partial

plan is returned unmodified (Line 11). Otherwise, the task is decomposed and a recursive

call is made with the resulting tasks ‘ (Lines 13-14). If the recursive call returns the

same partial plan, the process is terminated and the partial plan is returned unmodified

(Line 15). Otherwise, a recursive call is made with the refined partial plan obtained from

Line 14 and the remaining tasks.

Plans generated by HIEPPR-POP correctly solve the problem (S,G). The reason is that

each of the primitive tasks performs valid POP refinements (that is, HIEPPR-POP is

sound). However, no guarantees can be given that HIEPPR-POP will terminate. This

depends on the POP methods provided (e.g., using the POP methods may result in an

infinite loop). A similar observation can be made for any domain-configurable planner.

Similarities and differences versus HTN planning. The task decomposition process

of HIEPPR-POP is very similar to the one from an HTN planner such as SHOP. This is

the result of HIEPPR-POP methods having similar semantics to SHOP methods; the latter

determines the preconditions’ applicability by checking them in the state of the world

whereas the former checks them for existence in the current partial-order plan. Another

www.manaraa.com

120

similarity is that primitive tasks indicate transformations to the state of the world in the

former and to the partial-plan state in the latter. Their main difference is that whereas in

SHOP the primitive tasks denote domain actions, in HIEPPR-POP primitive tasks denote

partial plan refinements, some of which are the result of the domain actions (e.g., adding

a new step in the partial plan) while others are the result of the mechanics of POP

planning (e.g., adding an ordering constraint). Semantically, SHOP and HIEPPR-POP are

quite different; determining if a plan generated by SHOP is a solution for a problem is a

function of whether is entailed by the HTN generated by SHOP. In contrast,

determining if the partial plan is a solution for a problem is independent of the HTN

used by HIEPPR-POP to generate it. Like any POP plan, is a solution if it is complete.

This allows HIEPPR-POP to continue doing first-principles planning when an incomplete

partial plan is returned by the task decomposition process (Line 6 of HIEPPR-POP). This

is not possible with a plan generated by SHOP; the HTN methods in SHOP are required

to fully model the domain.3

5.3 An Example

Figure 5.3 shows an example of two methods for generative planning in HIEPPR-

POP for the blocks world domain. This particular encoding unstacks all blocks to the

table and then proceeds to stack them. The first method decomposes the task (unstack-

stack), has no preconditions, and generates two subtasks (unstackAll) and (stackAll).

3
 A way around this limitation of SHOP is explained in Alford et al. (2009). It translates SHOP’s methods into PDDL

and uses a planner based on PDDL to obtain solutions.

www.manaraa.com

121

(1)

(:method (unstack-stack)

 :preconditions ()

 :subtask ((unstackAll) (stackAll)))

(2)

(:method (unstackAll)

 :preconditions

 ((s0(on ?a ?b))

 (?effClearA = (s0 (clear ?a)))

 (not (si (ontable ?a))

 (?effHE = shandEmpty (handempty))

 (not (link shandEmpty (handempty) sother)))

 :subtasks

 ((!add_step sunstackAB (unstack ?a ?b))

 (!add_link s0 (on ?a ?b) sunstackAB)

 (!add_link ?effClearA sunstackAB)

 (!add_link ? effHE sunstackAB)

 (!add_step sputDownA (put-down ?a))

 (!add_link sunstackAB (holding ?a) sputDownA)

 (unstackAll_startingFrom ?b sunstackAB)

 (unstackAll))

 :preconditions ()

 :subtask ())

Figure 5.3 Sample methods in Blocks World

The second method has two precondition-subtask pairs, which can be thought of as an

if-then/else-if. The first if-then pair operates as follows: the effects of the initial step are

queried for an effect matching (on ?a ?b); the second precondition ensures ?a is the top-

most block on a stack in s0, and the matching effect is bound to the ?effClearA variable.

The next precondition makes sure there is no step si placing ?a on the table, as a means of

avoiding the addition of steps that would threaten one-another. In order to move ?a to the

table, the hand must be empty, so ?effHE is bound to a step producing this effect. The

next condition ensures the effect ?effHE is not used to support a precondition of another

www.manaraa.com

122

step in the plan, which could be the case if there are multiple stacks in the problem’s

initial state.

With the preconditions of the first if satisfied, it’s time for reducing the sub-tasks in

the “then” part. The first six subtasks are primitive. The first four subtasks modify the

current partial-order plan by adding an unstack step, with appropriate links supporting its

preconditions. The variables bound in the if-part (e.g. ?a, ?effClearA, and ?effHE) are

used for this purpose. The next two primitive tasks add a step that puts ?a on the table

and a link supporting its (holding ?a) precondition. The compound task

(unstackAll_startingFrom ?b sunstackAB) has a matching method, not shown in this

example, which intuitively resumes the unstacking process starting from block ?b, which

was just made clear by sunstackAB. After this subtask is decomposed, the task (unstackAll) is

then recursively invoked, in order to accommodate problems having multiple stacks of

blocks in the initial state.

When it is the case that there remain no more stacks to unpile, the preconditions of the

first if-then cannot be satisfied; at this time the second preconditions-subtasks pair is

used. Because an empty precondition list and an empty subtask list is evaluated as true,

the task (unstackAll) matched to this method is accomplished and the state of the partial-

order plan is such that all blocks are on the table, and the hand is empty. At this point the

second subtask, (stackAll), of the unstack-stack method is used to satisfy the open-

conditions of the goal state.

www.manaraa.com

123

5.4 Comparison of HIEPPR-POP to UMCP

Having presented the way in with HIEPPR-POP uses hierarchies to search for solutions,

one might wonder how the algorithm is related to UMCP (Erol et al., 1994b). The UMCP

algorithm, which stands for Universal Method Composition Planner, is a sound and

complete HTN planning algorithm. It is a seminal contribution in that it was the first

formulation of clear and concise syntax and semantics for HTN planning. Given that

HIEPPR-POP performs a type of task reduction planning, it is natural to wonder its

similarities to and differences from UMCP.

UMCP decomposes a task into a “plot”, which indicates the resulting subtasks and

their constraints including ordering constraints and causal links. Like POP, UMCP can

generate partially ordered plans. In UMCP, there are three types of tasks: (1) goal tasks,

which are propositions to make true in the world [e.g. (at pac1 loc1)], (2) primitive tasks,

which correspond to the addition of the domain action to the plan [e.g. (!drive-truck t1

loc1 loc2)], and (3) compound tasks, which are to be satisfied through the

accomplishment of any combination of goal, primitive, and compound tasks [e.g.

(deliver-all-packages)]. The means of accomplishing a compound task, like HIEPPR-

POP, is specified by defining a correspondingly named method or methods. It is in the

specification of methods, and their evaluation, that the two algorithms differ.

(declare-method task (arg1 arg2 ..)

 :expansion ((label1 task1 arg11 arg12 ..)

 (label2 task2 arg21 arg22 ..) ..)

 :formula Constraint-Formula)

Figure 5.4 Syntax for defining methods in UMCP

In UMCP, a method is defined as shown in Figure 5.4. The “expansion” of a method

corresponds to how the task should be accomplished via any combination of goal,

www.manaraa.com

124

primitive or compound tasks. Thus, in HIEPPR-POP parlance, the expansion label

defines the subtasks of the method being defined. The “formula” section of a method

definition in UMCP imposes constraints on the successful (correct) use of the method to

accomplish the task, and is specified through a “constraint-formula”; in HIEPPR-POP,

the preconditions of a method are used to impose constraints on when it is valid to use a

method to accomplish a task. The constraints on the valid application of a method to

accomplish a task is where UMCP and HIEPPR-POP differ.

A constraint-formula in UMCP is evaluated to be logically true or false, and is either

the symbol indicating trivial satisfaction (the Boolean value “true”), a single constraint,

or constraints connected by the Boolean operators AND, OR, and NOT (with the typical

interpretation of these terms). A single constraint must always evaluate to logically true

or false, and can be any of the following: (1) “(veq v1 v2)”, or “(veq v1 c1)” – the

existence of a binding constraint indicating a variable is equal to another variable or

constant symbol defined in the domain, (2) “(ord n1 n2)” – the existence of an ordering

constraint placing one task (primitive or otherwise) before another, (3) “(initially p)”– the

existence of a predicate in the initial state of the problem to solve, (4) “(before p n1)” or

“(after p n1)” – the assertion that a predicate exists in the world state immediately before

(or after) the indicated task is ordered to occur in any valid linearization of the plan, (5)

“(between p n1 n2)” – the assertion that, if task n1 comes before task n2, the indicated

predicate exists in every world state between those two tasks in every valid linearization

of the plan, and (6) “(protect p n1 n2)” – the assertion that no task occurring between n1

and n2 in a valid linearization of the plan have as effect the predicate p.

www.manaraa.com

125

In UMCP, in order to correctly use a method to accomplish a correspondingly named

task, the modification of the plan as specified by the expansion must conform to the

constraint formula of the method being applied. That is, after decomposing the task using

the specified expansions, the constraint formula must evaluate to true against the newly

refined plan (as must all task expansions applied along the way). This differs in several

important ways from how task reduction is performed in HIEPPR-POP.

The most important difference in task reduction between the two algorithms is in how

the conditions governing the correct application of a method to a task are evaluated. In

UMCP, the validity conditions are used to ensure that whatever modifications have been

made to the plan being refined must conform to the specified formula. That is, one can

see the conditions of a UMCP method as “filters”, whereby refinements are first made to

a plan according to the expansions, and then any plans that do not meet the specified

conditions are discarded. In this respect, the validity conditions of UMCP may be read as

“post-conditions” (things to be true after performing task reduction), whereas in

HIEPPR-POP the validity conditions governing successful application of a method are

“pre-conditions” (things that must be true before performing the task reduction). The

other differences in validity conditions between UMCP and HIEPPR-POP have to do

with the types of formulas that can evaluate to true. The following is a list of similarities

and differences between the conditions evaluated in the two algorithms:

 Variable equality (and inequality) are the same in the two algorithms.

 In UMCP, the ordering constraint manager not only tracks constraints on

primitive tasks (domain actions) but also constraints that have been added with

respect to non-primitive actions (tasks); in HIEPPR-POP, ordering constraints

www.manaraa.com

126

only exist for domain actions. Therefore, in UMCP, the ordering constraint

manager has more information to evaluate against than in HIEPPR-POP.

 In UMCP, while it is possible to query whether a predicate is asserted by the

initial state, it is not possible to find any other step in the plan that asserts that

predicate (as is possible in HIEPPR-POP). Specifically, while it is possible to

query whether a predicate is true in the world state immediately before or after

a task in UMCP (this is also possible in HIEPPR-POP by using a combination

of ordering constraint conditions and step add conditions), it is not possible to

determine which step is the provider in UMCP, if the provider is not the initial

step.

This chapter has shown how the addition of hierarchies to the refinement knowledge

addresses some notable limitations of the DCPOP algorithm, by creating a new algorithm

called HIEPPR-POP – for HIErarchical Partial Plan Refinements for Partial-Order Plans,

which subsumes the DCPOP approach (all domains that can be encoded for DCPOP can

be encoded in HIEPPR-POP, but not the other way around). The two main limitations

addressed by this chapter were the encoding and use of refinement rules that share a

prefix of refinement rule preconditions, and rules that share common refinement

strategies. The next chapter presents and empirical evaluation of both algorithms.

www.manaraa.com

127

6 Empirical Evaluation

This chapter presents three sets of experiments designed to evaluate the efficacy of the

domain-configurable algorithms and knowledge structures presented in the previous two

chapters.

The first subsection presents an evaluation of DCPOP, the non-hierarchical form of

the domain configurable partial-order plan refinement algorithm. Because the “grand

challenge” of this dissertation was to try and solve the plan adaptation problem, the

empirical evaluation focuses on how DCPOP performs at this task. While the results of

the first evaluation reveal an interesting contribution of the work (namely, the retrieval-

adaptation tradeoff held as unshakable in the case-based reasoning community did not

apply to DCPOP), they are nevertheless indicative of yet another attempt at plan

adaptation that met only limited success.

The second subsection presents the results of taking the lessons learned from

designing, analyzing and evaluating DCPOP, in order to make the hierarchical form of

the domain configurable partial-order plan refinement algorithm HIEPPR-POP and

attendant knowledge structures. Once again, like many researchers before me, I was

unable to find success at the plan adaptation problem. However, a startling result is that

the algorithm, when operating with complete and carefully crafted expert knowledge, is

able to perform comparably to SHOP1, in terms of time taken to find a solution. An

important caveat to this result is that while the solutions produced by SHOP1 are near

optimal in blocks-world (in terms of plan-length), I made no attempt in any of the three

www.manaraa.com

128

analyzed domains to produce short plans by HIEPPR-POP. In general, the expert

knowledge I encoded in order to achieve the fast planning performance reported does not

follow the same criterion for solution generation as a typical planner, which work hard

(through plan selection and flaw selection heuristics) to keep solution plans short. For

more details, see subsection two.

The final subsection of this chapter presents the results of empirically evaluating how

HIEPPR-POP performs without complete knowledge. The ability to specify only a

“sketch” of how to solve a problem, in the form of incomplete HIEPPR-POP methods, is

an attractive goal. This would permit the domain engineer to encode only the most vital

details of how experts solve problems (or exhibit preferences for solution types), leaving

the more mundane “bookkeeping” tasks to the underlying planner. Unfortunately, like

others who have attempted to use partial-order planning to solve planning problems of

even moderate size, I found the approach to be completely unsuccessful. Nevertheless,

the state of the art in planning continues to find improvements to plan ranking and flaw

selection heuristics, and as these techniques advance, the goal of supporting “sketching”

solutions becomes ever more realizable.

6.1 DCPOP: Adaptive Planning (small problems)

I first used the non-hierarchical version of HIEPPR-POP (named DCPOP) to not only

evaluate empirically the feasibility of my domain-configurable adaptation approach, but

to also revisit the trade-off between adaptation and retrieval effort traditionally held as a

principle in case-based reasoning. This principle states that the time needed for

adaptation reduces with the time spent searching for an adequate case to be retrieved. In

www.manaraa.com

129

particular, if very little time is spent in retrieval, the adaptation effort will be high.

Correspondingly, if the retrieval effort is high, the adaption effort is low. I analyzed this

principle in two boundary conditions: (1) when very bad and (2) when highly capable

adaptation procedures are used. The results showed that in the first boundary condition

the adaptation-retrieval trade-off does not necessarily exist. I also claimed that the second

does not hold for a class of planning domains frequently used in the planning literature.

To validate this claim, I performed experiments on two domains of this type. I used

DCPOP in order to investigate the adaptation-retrieval trade-off in a system capable of

performing “omniscient” search with ideal inputs, thereby providing a suitable

framework in which to re-evaluate the adaptation-retrieval trade-off.

For the purposes of this section, I refer to HIEPPR-POP methods as “POP Rules”.

This is to highlight the fact that no non-primitive tasks were used in the methods input to

the system. I defined two classes of POP rules: regressive rules and progressive rules.

Regressive rules indicate POP plan elements that must be removed from the plan. As a

result, they always have the undo: label in the consequent part of the rule. Progressive

rules indicate POP plan elements that must be added to the plan. As a result, they always

have the do: label in the consequent part of the rule. This distinction facilitates the

systematic search performed by the adaptation algorithm.

Recall that DCPOP receives as input the initial state, goal state, and actions. It also

receives the plan to be adapted, πold, and the POP rules R. The output is a complete partial

plan solving (S,G,A) or fail if none is found. DCPOP begins by adjusting πold relative to

(S,G). Adjust plan works by repeatedly (1) removing a step s that mentions objects in the

retrieved plan that are not mapped into objects in the new problem, and (2) removing any

www.manaraa.com

130

ordering constraint or causal link connecting to/from s. This is a common step for

adaptation in first-principles POP planning (e.g., [Hanks & Weld, 1995], [van der Krogt

& de Weerdt, 2005], [Kuchibatla & Munoz-Avila, 2006]). Then, a set of plans is found

by repeatedly applying regression rules in R until none is applicable. These plans are

added to P, the list of current candidate plans to be refined. When the list of candidate

plans is empty, a failure is returned. While there is at least one candidate plan to be

refined and no solution has been found, the following computation occurs: at each

iteration, a candidate partial plan π is selected using the heuristics and is removed from P.

If this candidate partial plan has no flaws, it is returned. Otherwise each partial plan

computed by applying an applicable POP rule to π is added to P. If no domain

configurable refinements are found, standard POP refinements are added to P (lines 11

and 12). In principle, DCPOP-A could use any relevant partial plan and flaw selection

heuristics described in [Younes & Simmons, 2003] for lines 4 and 11; however my

implementation uses last-in-first-out selection (a stack)for both plans and flaws. This

proved sufficient for resolving the flaws remaining in the plans produced after applying

all domain-configurable solving knowledge, however it is exceptionally unlikely for all

but toy domains that a domain engineer would be able to manually author rules that leave

flaws whose resolution require no backtracking.

www.manaraa.com

131

(1)

if s0  (on ?x ?y)

 s0  (block ?y)

 – s  (on ?x table)

then do: s': (move ?x ?y table)

 do: s0  (on ?x ?y) s'

(2)

if s: (move ?x ?y table)

 + s': (move ?z table ?w)

 – s  s'

then do: s  s'

(3)

if s: (move ?x ?y table)

 s0  (block ?y)

 s0  (on ?x ?y)

 – s0  (on ?x ?y) s

then do: s0  (on ?x ?y) s

(4)

if s: (move ?x table ?y)

 – ((on ?x ?y) @ s∞)

then undo: s:(move ?x table ?y)

Figure 6.1 POP rules partially encoding the unstack-stack strategy

Figure 6.1 shows an example of POP rules in the Blocks World domain. The blocks

world is a puzzle-like domain in which piles of blocks on a table must be reconfigured

into a target configuration. The basic restriction is that blocks can only be moved either

from the top of a pile to the top of another pile or to the table. Clearly, there is a high

degree of goal interaction – achieving one block on another may require undoing a stack

that successfully achieved some other set of goals. This problem is easy for humans,

solvable by babies, but can be hard for planners. These POP rules I created for this

domain encode the common domain-configurable strategy, called unstack-stack. This

strategy first unstacks all blocks to the table and then stacks them in the required

configuration (yielding an “omniscient” plan adaptation algorithm).

The first POP rule unstacks block ?x to the table. The first two conditions check if

block ?x is on top of another block ?y in the initial state. The third condition checks that

no existing step unstacks ?x to the table. This rule makes two refinements: it adds a step

s' unstacking ?x to the table and adds a causal link connecting the step s0 to achieve a

precondition of s'. The second POP rule ensures that unstacking steps (e.g., step s) are

done before stacking steps (e.g., step s'). The third POP rule is intended as a refinement

www.manaraa.com

132

of an input partial plan so that it commits to the encoded strategy. It checks if a block (?x)

that is unstacked by a step s is linked to the condition (on ?x ?y) in the initial state. If it is

not, it adds a causal link connecting the condition and s. This rule can be triggered in

situations where in the initial state of the retrieved partial plan, block ?x was on top of a

block ?y and later in that partial plan ?x was unstacked to the table by a step s. This plan

would not have been generated by the strategy encoded in Figure 6.1. The fourth POP

rule is a regression rule. It removes any stacking step from the table that does not achieve

a goal.

Any step removed by the fourth rule does not need to be added back because in the

stack-unstack strategy, blocks are stacked only to achieve goals. After all these steps are

removed, the four POP refinement rules of Figure 6.1 will produce incomplete partial

plans that can be further refined by a first-principles process without backtracking on any

of the refinements made by applying these rules. Note that this means that, for any given

flaw remaining in the plan, any resolution to that flaw need not be backtracked over. This

is a highly desirable property as in some domains it might be difficult to obtain a

collection of POP rules that produce a complete plan (for instance, by anticipating and

resolving threats before they arise). Consequently, rules can be given for the more

computationally complicated details (e.g., how to achieve the goals), leaving the rest to

standard partial-order planning. Ideally, the intermediate partial plan produced from

adaptation will be easier to complete than the initial partial plan. The unstack-stack

strategy, partially encoded in Figure 6.1, can be fully encoded to ensure that the resulting

partial plans are complete. Furthermore, no backtracking will be needed during the plan

adaptation process. Hence, when used in DCPOP, these rules resulted in an omniscient

www.manaraa.com

133

plan adaptation algorithm. This was confirmed in the experimental evaluation – no

backtracking occurred in any of the plan adaptation instances. Not all of the POP rules

are presented, for the sake of document readability.

In addition to performing experiments in the blocks-world domain, I also evaluated the

DCPOP algorithm by encoding rules for the logistics transportation domain. In the

logistics transportation domain, packages must be relocated into target locations. While

the goal interaction is limited in this domain (unlike block world, one can safely focus on

achieving the goal one package at a time), the nature of the problem makes knowing the

world state very useful. There are two transportation means: trucks, which can be used to

relocate packages within locations in the same city, and airplanes, which can be used to

relocate packages that are in different cities.

For each domain I constructed a case base of 100 cases and a testing set of 10

problems. All problems have the same goals but their initial state is randomly generated.

For the blocks world the goal is to achieve a 5-block pile and for logistics a particular

configuration of 4 packages required to be at 4 different locations. The initial state for the

blocks world is a configuration of the 5 blocks. So the total number of problems that can

be generated is 501. The initial state for the transportation domain is a configuration of 3

cities, each having 3 locations (including 1 airport), each city has 1 truck and there are 2

airplanes. So the total number of problems that can be generated, given that the packages

can start in any of the 9 locations and that the start locations of the trucks and airplanes

are fixed, is 6561. For each problem p in the testing set I adapt each of the cases c stored

in the case base. I ran each problem-case pair (p,c) 30 times and averaged the results. So

the total runs for each domain was 10 * 100 * 30 = 30,000 runs. Even though these

www.manaraa.com

134

problems are comparatively “small”, with respect to the size of problems solvable by

domain configurable generative planners, these problems are nevertheless present

sufficient complexity to the state of the art in plan adaptation.

Fixing the goals is a simplifying way to simulate how retrieval algorithms would work

with an omniscient adaptation algorithm. Namely, any case is retrieved that achieves the

same goals regardless of the similarity. In experiments reported in [Munoz-Avila &

Hullen, 1996], it is shown that modifying features in the initial state can result in a

significant change in the adaptation process on top of a partial order planner. For

historical context, in Prodigy/Analogy [Veloso, 1994] retrieval occurs by iterating over

two steps. At the first step the system uses a hash table to identify if there are cases stored

achieving the same number goals and then, in the second step, computes similarity based

on the initial state. If a sufficiently similar case is found (e.g., the similarity of the initial

states is greater than a pre-defined threshold) then the case is retrieved. Otherwise it

repeats the two steps by removing one goal. With an omniscient adaptation algorithm the

second step would be unnecessary. A similar process to Prodigy/Analogy is performed in

CAPlan/CbC and derSNLP.

Figure 6.2 shows the run-time results for the blocks world (left) and the logistics

transportation domain (right) respectively. The x axis corresponds to the 100 cases * 10

problems and the y axis correspond to the average time in seconds (not log scale) over the

30 runs for each (case, problem) adaptation process. The x-axis is sorted so the first 100

averaged data points are shown with the first given problem, then again the next 100

points with the second given problem, and so forth. Thus, the vertical bars in the graphs

separate data for each of the 10 problems; between those bars (i.e., for a given problem),

www.manaraa.com

135

the data points show the averaged times to adapt each of the cases in the CB into a

solution for the problem.

In the blocks world domain, I observed that the running times for adapting each case

to a given problem is clustered around the same time intervals. For example, for the 4
th

problem the average time to adapt all cases is 0.155 seconds with a standard deviation of

0.012 seconds. Similar results were observed across all other problems.

In the logistics domain, there is no significant time difference between solving times

across all given problems; the average problem solving time, across all pairs (case,

problem), is 9 seconds with a standard deviation of 0.5 seconds. The results for both

domains support the hypothesis that regardless of which any two cases are retrieved for a

given problem, their adaptation times will be roughly the same, regardless of the

individual cases similarity to the new problem, and given that the problems solved by the

cases and the new problem are of the same size.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 101 201 301 401 501 601 701 801 901

0

2

4

6

8

10

12

14

1 101 201 301 401 501 601 701 801 901

Figure 6.2 Adaptation times for blocks world (left) and logistics (right)

In spite of showing that the DCPOP algorithm can overturn the long held adaptation-

retrieval tradeoff that has been accepted as unshakable in the case-based reasoning

literature, the results are nevertheless underwhelming, with respect to the “grand

challenge” of plan adaptation (Section 2.1) – the size of problems solvable by DCPOP is

www.manaraa.com

136

small, and the time to adapt them quite high. What was gained from these experiments

was an understanding of the need for hierarchies, which led to the extension of the

DCPOP algorithm into HIEPPR-POP.

6.2 HIEPPR-POP: Generative Planning, Complete Knowledge

In order to evaluate how the addition of task names effects the run-time performance

of the algorithm and its ability to solve large problems, I performed generative planning

experiments with HIEPPR-POP on three STRIPS domains, each of which were used in

the AIPS-2000 planning completion: the logistics transportation domain, the blocks

world domain, and the scheduling domain. The blocks world and logistics domains are

well known, and are the same as presented in the previous section. The scheduling

domain involves the machining of parts to achieve various shape and surface conditions;

parts can be made cylindrical, be painted various colors, and be finished “rough”,

“smooth,” or “glossy”. The goals are mostly non-interacting, however actions compete

for machine availability. Also, for a single part, some goals “clobber” one-another (for

example, making the part cylindrical will undo other properties like a glossy finish).

As a benchmark for HIEPPR-POP, I used the results for the SHOP system reported for

the IPC-2000 held at AIPS-2000 (URL: http://www.cs.toronto.edu/aips2000/). The

website hosts the problem descriptions, the actions used, and the time results obtained by

SHOP running on a 500Mhz Pentium III processor with 1GB of RAM. I ran HIEPPR-

POP on a single core, 2.8Ghz Pentium 4 with 1.5 GB of RAM. Hence all CPU time

measurements for HIEPPR-POP are multiplied by a factor of 5.6. I acknowledge that this

may not be the most ideal evaluation, however it is a useful baseline that ensures no

www.manaraa.com

137

accidental nor intentional experimenter bias (for example, mistakes made in an attempt to

re-encode the domains, or to run the SHOP system without any performance tweaks that

may have been made for the competition).

For blocks world I encoded the following strategy: all blocks are first unstacked to the

table and then stacked back into the desired configuration (Figure 6.3 shows two of the

methods encoding this strategy; observe how the ability to use tasks profoundly changes

the encoding from what was shown in Figure 6.1). Note that in my unstack-stack

solution, even if there exists in the initial state a configuration of blocks (some, or all of

them) that matches exactly the configuration required in the goal state, they are unstacked

to the table anyway. This is done to sacrifice solution quality (measured by plan-length)

for speed to find solution. Solutions produced by SHOP1 are near optimal in blocks-

world (in terms of plan-length), which imposes an additional computational cost that

HIEPPR-POP does not have to pay; SHOP1 solutions for the other two domains are

similarly of high-quality. In general, the expert knowledge I encoded in order to achieve

the fast planning performance reported does not follow the same criterion for solution

generation as a typical planner (which work hard, through plan selection and flaw

selection heuristics) to keep solution plans short. The entire blocks world domain

required 1 method for the high-level strategy, 2 methods to perform unstacking of blocks,

and 2 methods for stacking. The problem solving times across problems of increasing

difficulty (size) are shown in Figure 6.4

www.manaraa.com

138

(:method simpleStrategy "Unstack all to table, then build goal stacks."

 :parameters ()

 :preconditions ()

 :subtasks ((unstackAll) (stackAll)))

(:method unstackAll "Unstack all first. "

 :parameters ()

 ;;unstack, starting from top of a pile

 :preconditions

 ((effect s[INIT] (on ?a ?b)) ;;find ?a on ?b in init

 (?effClearA = (effect s[INIT] (clear ?a))) ;;?a is on top

 (not (effect s[i] (ontable ?a))) ;;never made to table

 (?effHandEmpty = (effect s[handEmpty] (handempty)))

 (not (link s[handEmpty] (handempty) s[other])))

 :subtasks

 ((!add_step s[unstackAB] (unstack ?a ?b)) ;;?a now in hand

 (add_link ?lTemp00 s[INIT] (on ?a ?b) s[unstackAB])

 (add_link ?lTemp01 ?effClearA s[unstackAB])

 (add_link ?lTemp02 ?effHandEmpty s[unstackAB])

 (!add_step s[putDownA] (put-down ?a))

 (add_link ?lTemp10 s[unstackAB] (holding ?a) s[putDownA])

 (unstackAll_startingFrom ?b s[unstackAB])

 (unstackAll) ;;recurse for other stacks)

 :preconditions () ;;we're done unstacking. this method is done.

 :subtasks ())

Figure 6.3 Two HIEPPR-POP Methods Encoding Unstack-Stack

0.001

0.1

10

S
e

c
o

n
d

s

SHOP

HIEPPR-POP

Figure 6.4 Blocks World Time Comparison (log scale)

www.manaraa.com

139

For the logistics transportation domain I created a simple strategy whereby each

package is transported to its destination independently of the other packages. To make

task reduction “chain” more effectively, which made it far easier to author the domain (at

the expense of plan length), I always add an additional step after flying or driving to

ensure there is at all times an unused ‘at-location’ for the vehicle in question. This was by

far the most difficult domain to encode a complete set of domain knowledge, even after

adding the restrictions of handling each package independently of the other packages, and

always inserting an extra drive or fly; my encoding required 10 methods total, 1 for the

high level strategy, 1 for determining the object type of the ‘at’ (ie, package, truck, or

plane), 6 methods (each with precondition/subtask pairs) to establish the ‘at’ of packages,

1 method for moving trucks, and 1 method for moving planes. The problem solving times

across problems of increasing difficulty (and size) are shown in Figure 6.5. It is an

interesting implementation aside that this experiment instigated my move to support

typing, because of the heavy bookkeeping required in an untyped domain (for example,

there are 36 primitive subtasks in one of the methods, many of which for supporting

types).

www.manaraa.com

140

0.001

0.1

10

4 4 4 5 5 5 5 6 6 6 6 6 7 7 7 8 8 9 9 9 101011 1112121313141415151818202025253030

S
e

c
o

n
d

s

SHOP

HIEPPR-POP

Figure 6.5 Logistics Time Comparison (log scale)

For the scheduling domain I first achieve all cylindrical goals, then surface condition

goals, and finally paint the parts appropriately. Doing so required 1 method for the high-

level strategy, 2 methods for making parts cylindrical, 5 methods to achieve the surface

condition, and 2 methods for painting. It is notable that the partially-ordered solution

plans produced in the final domain allowed for multiple linearizations when parts didn’t

require the same machines. So for instance, the lathing and polishing of two different

parts could occur simultaneously if neither part required the machine used to satisfy the

other part’s goal. The comparative planning times for the scheduling domain are shown

in Figure 6.6

www.manaraa.com

141

0.001

0.1

10

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1
2

9

1
3

3

1
3

7

1
4

1

1
4

5

1
4

9

S
e
c

o
n

d
s

SHOP

HIEPPR-POP

Figure 6.6 Schedule Time Comparison (log scale)

In this domain, the HIEPPR-POP methods frequently had negated preconditions,

which take the longest to compute (intuitively, finding that there is no link matching a

given criterion means checking that all of them do not match). Nevertheless, good

planning times were achieved because subtasks typically added two steps (solving a

substantial goal clobbering problem) and 12 links. Most first-principles planners were

unable to solve all but the smallest problems in the domain, if any (the domain was later

eliminated from the planning competitions). An exception to this is FF, which

(impressively) was the only domain-independent planner able to solve beyond problem

instance 10. For context, FF worst-case solving time was 27.79 seconds, whereas the

worst case of SHOP1 was 0.82 seconds and HIEPPR-POPs worst-case was 0.17 seconds.

Although all these strategies are admittedly simple, the goal with these experiments

was to evaluate how the addition of tasks to the DCPOP algorithm (to yield HIEPPR-

POP) would affect the size of problems solvable, as well as the speed to solve those

problems. In the face of finding out that all problems were unsolvable unless the entire

planning process was guided by complete domain-configurable knowledge, I encoded for

www.manaraa.com

142

each of the three domains a complete collection of methods. That is, by the end of the

HTN_Decompose step of the HIEPPR-POP algorithm, a check for the existence of flaws

and ordering loops returned null (ie a complete plan). What was completely unanticipated

is that the addition of tasks enabled an implementation of the algorithm to achieve

comparable CPU performance to that of the well established and most widely used

domain-configurable generative planner – SHOP. Once again, this is with the caveat that

solutions produced by SHOP1, and typical first principles planners, work hard to keep

solution plans short (or of low cost), which imposes an additional computational cost that

HIEPPR-POP does not have to pay.

HIEPPR-POP is implemented in Java. I used basic data structures such a two-

dimensional reachability matrix to maintain and compute transitive closure of the

ordering constraints. The complexity of the update process is on the order of O(|V||E|),

where |V| is the number of vertices, which in this case are the steps in the plan, and |E| are

the edges, which in this case are the ordering and causal links. The matrix allows for

constant time query. I intend to release HIEPPR-POP as free software under the Global

Free Licence(sic). This being the first version of HIEPPR-POP, its inputs are purely

STRIPS constructs without PDDL extensions such as conditional effects, type

information, and quantifiers; therefore I restrict the first evaluation to the simplest

benchmark domains from IPC-2000 as subsequent competitions used increasingly

complex PDDL extensions.

In each of the graphs, the y-axis is seconds to solve the problem (log scale), and the x-

axis is problem instance (the larger x, the larger the planning problem). For the blocks

world and schedule domains, HIEPPR-POP performs better than SHOP across most

www.manaraa.com

143

problems, and appears exponentially faster in blocks-world (caveat same concerns about

plan quality). For the logistics domain they have almost the same performance. More

interesting than “who-beats-who” is the fact that, unlike what might be expected for

generative domain-configurable POP planning, HIEPPR-POP curves have a similar

pattern to the ones in SHOP. This shows that generative POP can perform reasonably

well, at least in time taken to find a solution, if adequate domain-configurable knowledge

is provided.

Currently, the implementation of HIEPPR-POP doesn’t support primitive tasks that

retract plan refinements (!remove_step, !remove_link, and !remove_order) and only

supports primitive tasks that add refinements. Furthermore, lifted planning in HIEPPR-

POP is buggy.

6.3 HIEPPR-POP: Generative Planning with Incomplete Knowledge

Having achieved success with HIEPPR-POP on large problems with complete domain-

configurable knowledge, it was natural to next evaluate the algorithm on large problems

with incomplete knowledge. This would be one step closer to supporting fast plan

adaptation (on account of being able to solve problems that were in configurations not

anticipated by the domain engineer), as well as supporting “plan sketching” (giving only

a few pieces of critical domain-configurable knowledge, and leaving the rest to the

underlying first-principles partial-order planner. As hinted at in the beginning of this

chapter, this experiment was a resounding failure.

Partial-order planning has a reputation for being slow, though its history is more subtle

than that. The following is a paraphrasing of the history of POP planning, as told by

www.manaraa.com

144

Subbarao Kambhampati in a talk about trying to “revive” partial-order planning (for his

planner RePOP): From the early days of planning research (1970) up until 1995, partial-

order planning was “king”, culminating in the advent of the UCPOP algorithm. If a 6-

block problem could be solved, the POP planner was considered very good. In 1995 came

the advent of planning as constraint-satisfaction, with the seminal planners Graphplan

(Blum & Furst) and SATPLAN (Kautz & Selman). Since 1997, the planning community

has focused much of its energies on developing effective domain-independent heuristics

(thanks in large part to Bonet & Geffner’s notion of a relaxed plan), but these have been

almost entirely for state-spaced planners. Jorg Hoffman’s FF planner, which operates in

the state-space, enjoyed years of success (even to this day) starting in 2000. It seems that

Subbarao Kambhampati is one of the few who still believe there is hope for partial-order

planning (and he has done much work to show that the state-space heuristics can be

adapted and applied to partial-order planning with success).

Another “believer” in partial-order causal link planning is Hakan Younes and Reid

Simmons, who were the creators of the VHPOP planner discussed in detail in the related

work section (I was originally going to build my approach on top of their planner, which

is considered a gold-standard implementation of POCL planners, and, as its name

implies, not only supports many heuristics for plan and flaw selection but can interleave

their use). Awarded “best newcomer” at the 3
rd

 international planning competition

(2002), the success ration of VHPOP was 54% -- far lower than that of FF (85%), LPG

(87%), SHOP2 (99%), TALPlanner (100%) and TLPlan (100%). This is surprising, given

the extensive optimizations implemented by VHPOP, and thorough evaluation of the

most effective heuristic techniques to apply in partial order planning.

www.manaraa.com

145

While HIEPPR-POP with complete knowledge can be very fast, my implementation

of first-principles, generative POP planning is not. Even for very small problems, (eg 3

blocks), the search process suffers from poor flaw selection and plan ranking heuristics,

leading the planner to explore many hundreds (or thousands, in some cases) of plans.

Given that solving even toy problems proved infeasible, it should come as no surprise

that HIEPPR-POP without complete knowledge could not make any solutions

whatsoever. Currently, the underlying POP planner is only useful for resolving trivial

flaws (ie, few resolvers, and no backtracking required) that remain in the plan after

applying all expert knowledge. Due in large part to the inefficacy of HIEPPR-POP’s

underlying POP planner, I humbly join the ranks of the many who have tried this problem

before me without success. HIEPPR-POP, in spite of the strengths of the algorithm (as

evidenced by the speed of generative planning with complete domain-configurable

knowledge, and the ability, under certain conditions, to solve adaptation problems

without the traditional retrieval-time/adaptation-time tradeoff) is currently incapable of

solving the grand plan adaptation problem as laid out in Section 2.1.

www.manaraa.com

146

7 Conclusions and Future Work

The main goal of this dissertation was to address the problem of using high-quality,

but incomplete, expert planning knowledge in a manner that allows for scalable planning

that includes adaptation, and to do so in a way that allows for flexible plan execution. To

accomplish this goal I created and studied a new form of expressing and using domain-

configurable hierarchical planning knowledge for refining partial-order plans.

Milestone zero was the investigation of using existing plan adaptation algorithms

(domain-independent and domain-configurable) in state-of-the-art partial order planners,

such as VHPOP [Younes & Simmons, 2003]. This was completed between 2007-8, and

resulted in the decision to create a new planning system from scratch. While

implementing novel domain-independent adaptation algorithms in existing systems

proved feasible, it proved forbiddingly cumbersome to integrate novel domain-

configurable approaches. Furthermore the choice to develop a system in-house provided

more liberty with respect to future licensing and distribution concerns, and has also been

an enlightening pedagogical exercise.

Having decided to develop a new algorithm, the first milestone was the definition of a

representation formalism capable of encoding domain-specific partial-order plan

adaptation knowledge. The representation formalism had to be flexible enough to be able

to represent the various kinds of transformations that may occur in a partial-plan while

having clear syntax and semantics. Furthermore, the representation had to allow for rapid

www.manaraa.com

147

plan reuse. The design of the representation formalism is inherently tied to the underlying

partial-order plan generation paradigm on which the plan adaptation is based.

I reached this first milestone in 2008 with the development of the DCPOP-A

algorithm, and presented an empirical and theoretical evaluation of it in (Lee-Urban &

Munoz-Avila, 2009). This first implementation was non-hierarchical and had no notion

of tasks, but demonstrated the feasibility of the approach. The run-time performance of

the system was quite slow, but was notable in that it consistently demonstrated near-

constant time adaptation in two benchmark domains of arbitrary source plans into

solutions to 10 randomly picked problems. Another limitation of this first approach was

that it did not scale well; DCPOP-A could only find solutions to small problems.

The second milestone was to investigate ways of extending the formalism to (1) better

achieve the goal of rapid plan reuse (rather than slow, but constant time reuse), to (2)

make encoding the domain-configurable knowledge easier, and to (3) find a way to make

the approach scale to large problems. To that end, I developed the theory in 2008-9 to

allow for hierarchical knowledge structures, resulting in HIEPPR-POP. These changes

successfully made encoding the knowledge less error-prone, reduced the required number

of preconditions and effects of the control rules, decreased planning time considerably

(speedups of roughly 1000x over the non-hierarchical approach), and allowed the process

to scale to very large problems. Preliminary results indicated that with carefully

constructed control rules, HIEPPR-POP was at least competitive with the original version

of SHOP and could solve generative problems of equivalent size. However, the status of

the new implementation at the time did not yet allow the retraction of plan refinements

www.manaraa.com

148

(and is therefore only capable of generation, not adaptation). The next step was to finish

the retraction-related elements of the implementation.

The third milestone was to undertake a rigorous empirical and theoretical evaluation of

HIEPPR-POP, and prepare submissions for the planning and case-based reasoning

conferences. This included the analysis of the complexity of the algorithm for performing

generation as well as adaptation, the examination of conditions for its soundness and

completeness, and the study of how flexible (in execution) solution plans are. I evaluated

HIEPPR-POP by testing against standard domains used in the International Planning

Competition (IPC).

For generating adaptation problems there were two problem generation schemas. In the

first schema I constructed a program, called Modifier, which added a parameterized

number of features in the initial state and related goals; the selection of features is

specialized for each domain. I then: (1) used the random problem generator to generate

problems. (2) solved these problems using HIEPPR-POP to obtain plans from scratch. (3)

used the modifier program to obtain variants of the problems which were then solved by

taking the solution obtained in (2) as the source plan input for HIEPPR-POP plan

adaptation. By creating modified partial plans in this fashion, I increased the likelihood

that the source plan can be extended to solve the variants of the problems. For the second

problem generation schema, I used the same Steps (1)-(3) as in the first schema but the

modifier program would be extended to also remove features from the initial and goal

states in addition to adding new features to those states (the selection of the features was

also domain-specific). This increased the likelihood that the target problem could not be

solved by simple extension of the source plan.

www.manaraa.com

149

The final milestone was to formulate an abstract problem that captured the essence of

domain-configurable plan refinement knowledge for partial-order planning, and to

perform complexity analysis on this abstract problem.

7.1.1 Scientific Contributions

Throughout this document, several scientific contributions of thisdissertation to the state-

of-the-art in planning research have been identified. For convenience, they are

summarized and extend below. This work contributes (or is poised to contribute) the

following:

 Ability to make partial-order plans for large problems. Algorithms that use

a partial-order plan representation historically cannot generate plans for problems

with many goals, which require many actions to solve the problem. I have shown

that in some situations, the HIEPPR-POP algorithm can do so. This is notable in

that partial-order solutions can be far more flexible in their execution than totally-

order solutions, and also partial-order plans are believed to be a better approach for

supporting actions with duration (a condition that exists in many real-world

planning problems).

 Fast, generative domain-configurable partial-order planning. The main goal

of this research was to study scalable (with respect to problem size) and well-

founded plan adaptation. However, along the way to achieve this goal the study

included generative domain-configurable partial-order planning. This yielded a

new planning algorithm that scales well with problem size, outperforming existing

domain-independent partial-order generative planning algorithms in terms of time

www.manaraa.com

150

taken to find a solution (while sacrificing solution quality as measured by plan-

length).

 Well-founded plan adaptation. HIEPPR-POP has clear semantics specifying

the conditions under which soundness (i.e., under which conditions are plans

generated guaranteed to be correct) and completeness (i.e., under which conditions

are plans guaranteed to be generated when a solvable problem is given) can be

guaranteed.

 The ability to generate adaptation solutions using incomplete adaptation

knowledge. HIEPPR-POP is a domain-configurable adaptation approach that does

not require complete adaptation knowledge to generate a solution (because at all

times it is refining a partial-order plan, this partial plan can be completed by first-

principles whenever there are gaps in the encoded domain-configurable

knowledge). This is somewhat novel in modern planning research and eases the

knowledge-engineering bottle-neck. A caveat to this contribution is that the ability

to extend incomplete solutions generated by HIEPPR-POP into complete solutions

(having no flaws) is predicated both on the quality of the first-principles planner

used to complete the plans, and the quality of the domain-configurable knowledge

used to produce the incomplete solution. In general, even the best implementations

of partial-order planning techniques have difficulties finding solutions for even

medium-sized problems – therefore, refining incomplete solutions is typically only

possible when the first-principles refinements required need no, or little,

backtracking.

www.manaraa.com

151

 Ability to study the trade-offs between knowledge given and performance

gains. As a result of the previous bullet, it is possible to investigate the trade-offs

between the amount of domain-configurable knowledge given and its result on

planning performance, measured in running time and percentage of actions

retained.

 A testbed for other researchers. HIEPPR-POP is the first adaptive, domain-

configurable partial-order planner freely available for the Case-Based reasoning

and Planning research communities. This enables others to do focused research on

other important areas of plan adaptation, such as the problem of which partial plan

should be used at the start of the adaptation process (retrieval), the problems of

which steps to remove from the plan to adjust and how to adjust the mapping of

objects used in the previous solution with objects in the new problem, without

having to first build or re-implement a successful plan-adaptation technique.

 The capability to retain a significant portion of the plan to be adapted. The

HIEPPR-POP approach should be able to retain a significant portion of the plan

when feasible. The amount retained will necessarily depend upon the input plan,

the conditions of the new problem, and the domain-specific plan adaptation

knowledge provided. This capability is a consequence of the ability of the

algorithm to solve large problems, and the use of a partial-order plan

representation that captures plan commitments at a finer level of granularity than

those used in total-order plan representation (a simple sequence of actions).

 No tradeoff between time spent to find a previous solution to adapt, versus

time spent performing adaptation. Under some (highly constrained) conditions,

www.manaraa.com

152

the HIEPPR-POP approach (specifically, the DCPOP algorithm) was shown to

take roughly the same amount of time to produce a solution to a new problem

through adaptation, regardless of the source plan used to make the solution. This is

counter to the well-established retrieval-adapt tradeoff commonly considered

inescapable in the case-based reasoning literature.

7.1.2 Future Work

There are several ways that the work presented in this dissertation can be expanded.

Many of these extensions represent challenging research questions to which there is no

clear answer – quite likely another dissertation’s worth of investigation. Other expansions

are more practically focused, and involve ways in which to modify the algorithm to make

it more useful outside of academia.

Nonclassical-planning extensions to HIEPPR-POP. The analysis and evaluation of

the HIEPPR-POP algorithm is currently restricted to the assumptions made in the

classical planning approach (Section 3.1). This is a relatively simplistic form of the more

general problem of solving complex real-world problems. These complex problems

involve such difficulties as: (1) limited state observability, where not all facts about the

world are known, and therefore cannot be assumed to be false, (2) non-deterministic

action outcomes, where the effects of taking an action are not always the same, (3)

actions having non-instantaneous effects on the world, for example a drive operator

whose effects only become true after a period of time has elapsed (4) dynamic

environments, where changes in the state of the world are not restricted to the application

of an action – that is, there are other agents besides the planner making changes to the

world, or the world itself changes over time (5) the number of possible world states is

www.manaraa.com

153

infinite, which is the case when the vocabulary of a problem domain is not restricted to a

finite set of symbols, such as when a problem includes the use of integers, and (6) not all

goals are explicitly specified, but instead the environment has varying “rewards” for

taking an action. Many modern planning systems are able to solve problems even in the

face of some of these complexities. It is an interesting problem to consider ways in which

the HIEPPR-POP algorithm can reason in these domains as well.

Studying HIEPPR-POP in situated, dynamic environments such as games. While

the study of dropping the above classical planning assumptions may at first appear to

cover this extension of the algorithm, there exist even more complications when a

planning algorithm is to be effective in a situated, multi-agent environment. In this

instance, the planner is to behave as one actor amongst many in a complex and constantly

changing world. In order to do so, it is important that the planning agent be able to: (1)

balance reasoning about long term goal achievement with the short-term need to take

action quickly, (2) independently change goals in response to new information, (3)

compete for limited resources, (4) coordinate with “allied” agents in order to achieve

goals not realizable by the planning agent on its own, possibly by sharing a single plan

across multiple agents or by decomposing and distributing the problem into individually

realizable parts, and (5) form strategies to overcome adversarial agents that intentionally

take actions detrimental to the planning agent.

Knowledge acquisition (learning) from solutions. An expert is not always able to

explain how they solve problems, in spite of being able to solve them. Furthermore, an

expert’s time can be limited and expensive, preventing them from having the opportunity

or willingness to share their “tricks”. What is instead needed is a way of learning the

www.manaraa.com

154

methods an expert intuitively and repeatedly employs. The ability of the HIEPPR-POP

algorithm to reason with incompletely specified knowledge is of no or limited help in this

case, where high quality solutions (plans) are available, but not the “advice” (methods)

about how the solutions were derived. The question of how to learn expert knowledge

from previous solutions, while challenging, is therefore an important one. A solution to

this question might also be useful in the case where domain-independent, uninformed

approaches are able to solve smaller problems in the domain (e.g. blocks world with 5

blocks), but the need exists to solve problems beyond the reach of blind search (e.g.

blocks world with 500 blocks).

Another research question regarding knowledge acquisition is whether it is possible to

derive HIEPPR-POP methods from existing domain-configurable knowledge structures.

For example, expert knowledge may be already be encoded in the form of HTN methods

for the SHOP planner, temporal-logic statements for TLPlan, or TMKL models for REM

[Murdock, 2001; Murdock and Goel 2003]. Naturally, finding an equivalence between

HIEPPR-POP methods and other knowledge structures would help in the use of HIEPPR-

POP in those domains for which knowledge already exists.

Use of machine learning techniques to speedup planning and improve solution

quality. For each plan element appearing in the precondition list of a HIEPPR-POP

method, there are often a number of ways to make a match in the plan being refined. So

long as each way to match is attempted systematically, there is no effect on the

correctness of the computed plan. My implementation iterates over candidates in the

order that they appear in the plan. However, the ordering of candidate evaluation can not

only have an effect on the quality of the final plan produced (for instance, a fixed

www.manaraa.com

155

iteration order means the candidate truck to deliver packages within a transportation

logistics domain problem is biased to the first truck appearing in the specification of the

initial state), it can also effect the time taken to find a solution (because of backtracking

over matches that make later preconditions unsatisfiable). Any automatic, unsupervised

way to make the order of evaluation of candidates more intelligent is therefore desirable;

it is worth investigating machine learning techniques suited to this task.

Similar to the problem of how to order plan element candidate evaluation is the

problem of which method to try when multiple methods can match the subtask (which

can be seen as a method having multiple precondition-list/subtask-list pairs). Currently,

HIEPPR-POP evaluates each pair of precondition-list, subtask-list in a method in the

order in which the pairs appear. While in some domains this order of evaluation is

necessary to ensure the solution generated matches the intentions of the domain author,

there may be situations where a solution can be derived regardless of the order of

evaluation of the pairs. When this is the case, the order that pairs are evaluated will

certainly effect the amount of time taken to find a solution, and the quality of the

resulting plan. It would therefore be worth investigating how machine learning

techniques (such as reinforcement learning) might be applied to guide the order of

evaluation of pairs.

This dissertation has pointed to strengths, weaknesses, and possible applications of the

HIEPPR-POP approach to plan adaptation. It is of interest to note that concurrent with

completing this dissertation, I worked with a team to create and deliver to a well-known

international company another approach, which they found successful, for reusing

www.manaraa.com

156

previous solutions to solve new problems (by relaxing the notion of what constitutes a

plan). At this time, I am using a modified version of HIEPPR-POP to solve an adaptation

problem for a branch of the U.S. government. The problem of how to solve the lack of

scalability of plan adaptation techniques remains an open question, and a major barrier to

the successes of adaptation techniques in industrial applications. It is my belief that the

approach taken in HIEPPR-POP is one promising way to do so, especially as solutions

are found to the tasks outlined above as future work.

www.manaraa.com

157

References

1. Alford, R., Kuter, U., and Nau, D. (2009) Translating HTNs to PDDL: A small

amount of domain knowledge can go a long way. In Proc. International Joint

Conference on Artificial Intelligence (IJCAI), July 2009.

2. Ambite, J.L. and Knoblock, C.A. (2001) Planning by Rewriting, Journal of AI

Research.

3. Ambite, J. S., Knoblock, C. A., & Minton, S. (2005) Plan Optimization by Plan

Rewriting. In Intelligent Techniques for Planning. Ioannis Vlahavas and Dimitris

Vrakas Eds., Idea Group Publishing, Hershey, PA.

4. Au, T.C., Muñoz-Avila, H., & Nau, D.S. (2002) On the Complexity of Plan

Adaptation by Derivational Analogy in a Universal Classical Planning Framework. In

Proceedings of the Sixth European Conference on Case-Based Reasoning. Berlin:

Springer.

5. Avesani, P., Perini, A., and Ricci, F. (1993) Combining CBR and constraint reasoning

in planning forest fire fighting. Proceedings of the first European workshop on Case-

Based reasoning (ECCBR-93).

6. Ayan, N. F., Kuter, U., Yaman, F., and Goldman, R. (2007) HOTRiDE: Hierarchical

Ordered Task Replanning in Dynamic Environments. Proceedings of the ICAPS-07

Workshop on Planning and Plan Execution for Real-World Systems -- Principles and

Practices for Planning in Execution.

7. Bacchus, F. and Ady, M. (2001) Planning with Resources and Concurrency: A

Forward Chaining Approach, International Joint Conference on Artificial Intelligence

(IJCAI-2001), AAAI press.

8. Bacchus, F. and Kabanza, F. (2000) Using Temporal Logics to Express Search

Control Knowledge for Planning, Artificial Intelligence.

9. Blum, A. and Furst, M. (1997). Fast planning through planning graph analysis.

Artificial Intelligence. Elsevier.

10. Boella, G., and Damiano, R. 2002. A replanning algorithm for a reactive agent

architecture. In Artificial Intelligence: Methodology, Systems, and Applications, 183–

192. Springer Verlag.

11. Botea A., Enzenberger M., Mueller M., and Schaeffer J. 2005. Macro-FF: Improving

AI Planning with Automatically Learned Macro-Operators. Journal of Artificial

Intelligence Research.

12. Carbonell, J.G. (1986) Derivational analogy: A theory of reconstructive problem

solving and expertise acquisition. Machine Learning.

13. Choi, D., & Langley, P. 2005. Learning teleoreactive logic programs from problem

solving. Proceedings of the Fifteenth International Conference on Inductive Logic

Programming. Bonn, Germany: Springer.

14. Coles, A.I., Fox, M., Long, D., Smith, A.J., 2008. Teaching forward-chaining

planning with JavaFF, colloquium on AI education. In: Twenty-Third AAAI

Conference on Artificial Intelligence, July.

www.manaraa.com

158

15. Corchado, J.M., Bajo, J., and Rodríguez, S. (2007) Intelligent Guidance and

Suggestions Using Case-Based Planning. Proceedings of the Seventh International

Conference on Case-Based Reasoning (ICCBR-07). Springer.

16. Costas, T, & Kashyan, P. (1993) Case-based reasoning and learning in manufacturing

with TOTLEC planner. IEEE Transactions on Systems, Man, and Cybernetics.

17. Cox, M. T., Muñoz-Avila, H., & Bergmann, R. 2006. Case-based planning.

Knowledge Engineering Review. 20(3): 283-287.

18. Cunningham, P., Finn, D. and Slattery, S. (1994) Knowledge engineering

requirements in derivational analogy. Proceedings of the European Conference on

Case-Based Reasoning (ECCBR-94). Springer.

19. Do, M. B. and Kambhampati, S. (2002) Planning Graph-based heuristics for Cost-

sensitive Temporal Planning. Proceedings of the International Conference of AI

Planning Systems (AIPS), 2002.

20. Erol, K., Hendler, J., and Nau, D. (1994) HTN planning: Complexity and

expressivity. In: Proceedings of the Twelfth National Conference on Artificial

Intelligence (pp. 123-1128). Seattle, WA: AAAI Press.

21. Etzioni, O. (1993) Acquiring search-control knowledge via static analysis. Artificial

Intelligence.

22. Fagan, M. & Cunningham, P. (2003) Case-Based Plan Recognition in Computer

Games. Proceedings of the Fifth International Conference on Case-Based Reasoning

(ICCBR-05). Springer.

23. Fern, A., Yoon, S.W., and Givan, R. (2004) Learning Domain-Specific Control

Knowledge from Random Walks. Proceedings of the International Conference on

Automated Planning & Scheduling (ICAPS-04). AAAI Press.

24. Fikes, R. and Nilsson, N. (1971) STRIPS: A new approach to the application of

theorem proving to problem solving. Artif. Intell., 2(3/4):189-208, 1971.

25. Fox, M., Gerevini, A., Long, D., and Serina, I. (2006) Plan Stability: Replanning

versus Plan Repair, Proceedings of the 16th International Conference on Automated

Planning and Scheduling (ICAPS'06). AAAI Press.

26. Gerevini, A, & Serenia, I. (2000). Fast Plan Adaptation through Planning Graphs:

Local and systematic search techniques. Proceedings of the Fifth International

Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000).

Breckenridge, CO: AAAI Press.

27. Gerevini, A. and Serina, I. (2009) Efficient Plan Adaptation through Replanning

Windows and Heuristic Goals. Journal of Algorithms in Cognition, Informatics and

Logic, (Elsevier, ISSN: 0196-6774), to appear.

28. Ghallab, M., Nau, D., and Traversa, P. 2004. Automated Planning: Theory and

Practice. Morgan Kaufmann Publishers.

29. Greene, D., Freyne, J., Smyth, B., and Cunningham, P. 2008. An Analysis of

Research Themes in the CBR Conference Literature. In Proceedings of the 9
th

European Conference on Case-Based Reasoning (ECCBR 2008), Trier, Germany.

Springer Verlag.

30. Haigh, K. Z., Shewchuk, J. R., & Veloso, M. M. (1997). Exploiting Domain

Geometry in Analogical Route Planning, Journal of Experimental and Theoretical

Artificial Intelligence. 9: 509-541

www.manaraa.com

159

31. Hammond, K. (1986) Chef: A model of case-based planning. In: Proceedings of the

National Conference on Artificial Intelligence (AAAI-86). AAAI Press, 1986.

32. Hanks, S. and Weld, D. 1995. A domain-independent algorithm for plan adaptation.

Journal of Artificial Intelligece Research, 2.

33. Hart, P.E., Nilsson, N.J., Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and

Cybernetics, IEEE press.

34. Hoffmann, J., and Nebel, B. (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14, 253-302.

35. Hogg, C. & Munoz-Avila, H. (2007) Learning of Tasks Models for HTN Planning.

Proceedings of the ICAPS-07 Workshop on AI Planning and Learning (AIPL). AAAI

Press.

36. Ihrig, L.H., & Kambhampati, S. (1994). Derivational replay for partial order

planning. Proceedings of the Twelfth National Conference on Artificial Intelligence

(AAAI-94). Seattle, WA: AAAI Press, 1994.

37. Ihrig, L., Kambhampati, S.: Design and Implementation of a Replay Framework

Based on a Partial Order Planner. In: AAAI/IAAI-96, pp. 849-854. AAAI Press

(1996)

38. Ihrig, L. & Kambhampati, R. (1997) Storing and Indexing plan derivations through

explanation-based analysis of retrieval failures L. and S. Journal of Artificial

Intelligence Research.

39. Jin, L., Decker, K., & Schmidt, C. (2009) BioPlanner: A Plan Adaptation Approach

for the Discovery of Biological Pathways across Species. Proceedings of the

Innovative Applications of AI (IAAI-09). AAAI Press.

40. Kambhampati, S. (1994). Exploiting causal structure to control retrieval and refitting

during plan reuse. Computational Intelligence.

41. Kambhampati, S. 1997. Refinement Planning as a Unifying Framework for Plan

Synthesis. AI Magazine 18(2): 67–97.

42. Katukam, S., and Kambhampati, S. (1994) Learning Explanation-based search control

rules for Partial-order planning. Proceedings of the conference for the American

Association for Artificial Intelligence (AAAI-94). AAAI Press.

43. Knoblock, C.: Generating Parallel Execution Plans with a Partial-Order Planner. In:

AIPS-94, pp. 98-103. AAAI Press (1994)

44. Kuchibatla, V., and Munoz-Avila, H. (2006) An Analysis on Transformational

Analogy: General Framework and Complexity. In Proceedings of European

Conference in Case-based reasoning (ECCBR-06). Springer.

45. Kuter, U., and Nau, D. 2005. Using Domain-Configurable Search Control in

Probabilistic Planners. Proceedings of the National Conference on Artificial

Intelligence (AAAI-05). Springer.

46. Kvarnström, J., and Doherty, P. (2001) TALplanner: A Temporal Logic Based

Forward Chaining Planner. Annals of Mathematics and Artificial Intelligence

(AMAI), Volume 30, pages 119-169.

47. Kvarnström, J., Doherty, P., and Haslum, P. Extending TALplanner with

concurrency and resources. In Proceedings of the 14th European Conference on

Artificial Intelligence (ECAI-2000), 2000.

www.manaraa.com

160

48. Kvarnström, J. and Magnusson, M. (2003) TALplanner in the third International

Planning Competition: Extensions and Control Rules. Journal of Artificial

Intelligence Research, 20:343–377

49. Lee-Urban, S., and Munoz-Avila H. (2009) Adaptation Versus Retrieval Trade-Off

Revisited: an Analysis on Boundary Conditions. Proceedings of the 8th

International Conference on Case-Based Reasoning (ICCBR-09). Springer.

50. Lopez de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S.,

Faltings, B., Maher, M. L., Cox, M. T., Forbus, K., Keane, M., Aamodt, A., &

Watson, I. (2006). Retrieval, reuse and retention in case-based reasoning. Knowledge

Engineering Review.

51. Marthi, B., Russell, S. J., and Wolfe, J. (2008). Angelic Hierarchical Planning:

Optimal and Online Algorithms. Proceedings of the International Conference in AI

Planning and Scheduling (ICAPS-08). AAAI Press.

52. Martin, M. and Geffner, H. (2000) Learning generalized policies in planning using

concept languages. Proceedings of the International Conference on Knowledge

Representation and Reasoning (KR 2000). Morgan Kaufmann.

53. McAllester, D. A., & Rosenblitt, D. (1991). Systematic nonlinear planning. In

Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 634–639,

Anaheim, CA. AAAI Press.

54. Miksch, Silvia. (1999) Plan management in the medical domain. AI Communications

12, pp 209-235.

55. Minton, S. 1988. Learning Effective Search Control Knowledge: An Explanation-

Based Approach. Kluwer Academic Publishers, Boston, MA.

56. Mitchell, S.W. (1997). A hybrid architecture for real-time mixed-initiative planning

and control. Proceedings of the Ninth Conference on Innovative Applications of AI

(IAAI). AAAI Press.

57. Mitchell, T.; Keller, R.; and Kedar-Cabelli, S. (1986) Explanation-based

generalization: A unifying view. Machine Learning.

58. Mooney, R.J. (1988) Generalizing the Order of Operators in Macro-Operators.

Machine Learning.

59. Munoz-Avila, H., Aha, D.W., Breslow, L.A., & Nau, D. (1999). HICAP: An

Interactive Case-Based Planning Architecture and its Application to Noncombatant

Evacuation Operations. In: Proceedings of the Innovative Applications of AI (IAAI-

99). AAAI Press.

60. Munoz-Avila, H. and Cox, M.T. (2008) Case-Based Plan Adaptation: An Analysis

and Review. IEEE Intelligent Systems. IEEE inc.

61. Muñoz-Avila, H., Hüllen, J.: Feature Weighting by Explaining Case-Based Planning

Episodes. In: EWCBR-96. LNCS, vol. 1168, pp. 280-294. Springer (1996)

62. Muñoz-Avila, H & Weberskirch, F. (1996) Planning for manufacturing workpieces

by storing, indexing and replaying planning decisions. Proceedings of the

International Conference on AI Planning Systems (AIPS). Edinburgh: AAAI Press.

63. Muñoz-Avila, H. & Weberskirch F. (1997) A Case Study on the Mergeability of

cases with a Partial-Order Planner. In S. Steel & R. Alami (Eds.). Proceedings of the

European Conference on Case-based Reasoning (ECP), Springer.

64. Murdock, J.W. (2001). Self-Improvement Through Self-Understanding: Model-Based

Reflection for Agent Adaptation. PhD thesis, Georgia Institute of Technology.

www.manaraa.com

161

65. Murdock, J.W, and Goel, A. K. (2003) Localizing planning with functional process

models. In Proceedings of the Thirteenth International Conference on Automated

Planning and Scheduling.

66. Myers, K. L. (2006) Metatheoretic Plan Summarization and Comparison.

Proceedings of the 16th International Conference on Automated Planning and

Scheduling (ICAPS-06). AAAI Press.

67. Nau. D. S. (2007) Current trends in automated planning. AI Magazine.

68. Nau, D., Au, T., Ilghami, O., Kuter, U., Muñoz-Avila, H., Murdock, J., Wu, D.,

Yaman, F.: Applications of SHOP and SHOP2. IEEE Intelligent Systems 20(2), 34-

41. (2005)

69. Nau, D., Cao, Y., Lotem, A., and Muñoz-Avila, H. (1999) SHOP: Simple hierarchical

ordered planner. Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence. AAAI Press.

70. Nebel, B. and J. Koehler, (1995) Plan Reuse versus Plan Generation: A Theoretical

and Empirical Analysis, Artificial Intelligence (Special Issue on Planning and

Scheduling).

71. Nguyen, X., & Kambhampati, S. (2001). Reviving partial order planning. In Nebel,

B. (Ed.), Proceedings of the Seventeenth International Joint Conference on Artificial

Intelligence, pp. 459–464, Seattle, WA. Morgan Kaufmann Publishers.

72. Onder, N., Whelan G. C., and Li L. (2006) Engineering a Conformant Probabilistic

Planner. Journal of AI research (JAIR).

73. Ontañón, S., Mishra, K., Sugandh, N., Ram A. (2007) Case-Based Planning and

Execution for Real-Time Strategy Games. Proceedings of the Seventh International

Conference on Case-Based Reasoning (ICCBR-07). Springer.

74. Paulokat, J., Wess, S.: Planning for Machining Workpieces with a Partial-Order,

Nonlinear Planner. In: Proceedings of the AAAI 1994 Fall Symposium on Planning

and Learning. AAAI Press (1994)

75. Penberthy, J. S., & Weld, D. S. (1992). UCPOP: A sound, complete, partial order

planner for ADL. In Nebel, B., Rich, C., & Swartout, W. (Eds.), Proceedings of the

Third International Conference on Principles of Knowledge Representation and

Reasoning, pp. 103–114, Cambridge, MA. Morgan Kaufmann Publishers.Perez, A.,

& Carbonell, J. (1994). Control knowledge to improve plan quality. Proceedings of

the International Conference on AI Planning Systems (AIPS-96). (AIPS-94).

Chicago: AAAI Press.

76. Pollack, M. E., Joslin, D., and Paolucci, M. (1997) Flaw selection strategies for

partial-order planning. Journal of AI Research.

77. Ram, A., and Francis, A. (1996) Multi-Plan Retrieval and Adaptation in an

Experience-Based Agent. In Case-Based Reasoning: Experiences, Lessons, and

Future Directions, D.B. Leake, editor, AAAI Press.

78. Reddy, C., and Tadepalli, P. (1997) Learning goal decomposition rules using

exercises. Proceedings of the International Conference on Machine Learning

(ICML). ACM.

79. Ruby, D., and Kibler, D. F. (1991). SteppingStone: An Empirical and Analytic

Evaluation. Proceedings of the Ninth National Conference on Artificial Intelligence,

527--531, Morgan Kaufmann.

www.manaraa.com

162

80. Sacerdoti, E. D. 1975. The Nonlinear Nature of Plans. In Proceedings of the Fourth

International Joint Conference on Artificial Intelligence (IJCAI-75), 206-214.

81. Salem, A.-B. M., Nagaty, K. A., & El Bagoury, B. (2003). A Hybrid Case-Based

Adaptation Model for Thyroid Cancer Diagnosis. In ICEIS 2003, Proceedings of the

5th International Conference on Enterprise Information Systems.

82. Sanchez Ruiz-Granados, A., Lee-Urban, S. & Munoz-Avila, H., Gonzalez Calero, P.

A., Diaz Agudo, B. (2007) Game AI for a Turn-based Strategy Game with Plan

Adaptation and Ontology-based retrieval. Proceedings of the ICAPS-07 Workshop

on ICAPS 2007 Workshop on Planning in Games. AAAI Press.

83. Schmidt, R., Vorobieva, O., & Gierl, L. (2001). Case-based Adaptation Problems in

Medicine. International Journal of Medical Informatics.

84. Schmidt, R., Vorobieva, O., & Gierl, L. (2003). Adaptation Methods in an Endocrine

Therapy Support System. Proceedings of ICCBR-03 Workshop on CBR in the Health

Sciences.

85. Tonidandel, F. and Rillo, M. (2002) The FAR-OFF system: A heuristic search case-

based planning. Proceedings of the International Conference on AI Planning Systems

(AIPS), AAAI Press, 2002

86. Tonidandel, F. and Rillo, M. (2005) Case Adaptation by Segment Replanning for

Case-Based Planning Systems. Proceedings of the Seventh International Conference

on Case-Based Reasoning (ICCBR-07). Springer.

87. US Department of Education. (2009) Practical Information on Crisis Planning.

http://www.higheredcenter.org/resources/practical-information-crisis-planning-guide-

schools-and-communities (last viewed: November, 2009).

88. van der Krogt, R.P.J. and de Weerdt, M.M.. (2005) Plan Repair as an Extension of

Planning. Proceedings of the 15th International Conference on Automated Planning

and Scheduling (ICAPS-05). AAAI Press.

89. Veerakamolmal, P. and Gupta, S. M., (2002) A Case-Based Reasoning Approach for

Automating Disassembly Process Planning, Journal of Intelligent Manufacturing.

90. Veloso, M. (1994) Planning and learning by analogical reasoning. Berlin: Springer-

Verlag.

91. Veloso, M. & Carbonell, J. 1993. Derivational Analogy in PRODIGY: Automating

Case Acquisition, Storage, and Utilization. Machine Learning, 10(3):249-278.

92. Veloso, M. M., Mulvehill, A. M., & Cox, M. T. (1997). Rationale-supported mixed-

initiative case-based planning. In Proceedings of the Fourteenth National Conference

on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence

Conference. AAAI Press / The MIT Press.

93. Vidal, V. and Geffner, H. (2006) Branching and Pruning: An Optimal Temporal

POCL Planner based on Constraint Programming. Artificial Intelligence.

94. Warfield, I., Hogg, C., Lee-Urban, S., Munoz-Avila, H. (2007) Adaptation of

Hierarchical Task Network Plans. Proceedings of the Twentieth Flairs International

Conference (FLAIRS-07). AAAI Press.

95. Weld, D. S. (1994). An introduction to least commitment planning. AI Magazine, 15

(4), 27–61.

96. Wilkins, D. E. 1988. Practical Planning: Extending the Classical AI Planning

Paradigm. Morgan Kaufmann Publishers Inc.

www.manaraa.com

163

97. Wilkins, D. E., & desJardins, M. (2001) A Call for Knowledge-Based Planning. AI

Magazine. AAAI Press.

98. Williamson, M., & Hanks, S. (1996). Flaw selection strategies for value-directed

planning. In Drabble, B. (Ed.), Proceedings of the Third International Conference on

Artificial Intelligence in Planning Systems, pp 237-244, Edinburgh, Scotland. AAAI

Press.

99. Intelligence Planning Systems, pp. 237–244, Edinburgh, Scotland. AAAI Press.

100. Winner, E., and Veloso, M. M. (2003). DISTILL: Learning domain-specific

planners by example. In Proceedings of the International Conference on Machine

Learning (ICML-03).

101. Wolldridge, M. 2002. An Introduction to MultiAgent Systems. John Wiley &

Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.

102. Younes, H.L.S. and Simmons, R.G. (2003) VHPOP: Versatile Heuristic Partial

Order Planner. Journal of Artificial Intelligence Research, 20, pp. 405-430.

103. Younes, H.L.S. (2006). The VHPOP Story. Tempastic.ORG. Retrieved March

2012, from http://www.tempastic.org/vhpop/vhpopstory.html

www.manaraa.com

164

Appendix D: Glossary of definitions

Definition 3-1. A constant symbol is syntactically composed from a unique sequence

of one or more alpha-numeric characters, which are, by convention, the upper and

lowercase versions of the 26 letters in the English alphabet, the digit characters ‘0’

through ‘9’, the dash character‘-‘ and the underscore character ‘_’), for example

‘table’ or ‘truck-1’ (the single quotes are not part of the symbol); a constant is

therefore a string semantically used to refer to a specific object in the problem

being modeled. .. 38

Definition 3-2. A variable is a symbol that can be used in the place of a constant, akin

to the concept of variables in algebra. As is common in the automated planning

field, I follow the syntactic convention that variables begin with a question mark,

followed by a sequence of one or more characters. Two examples of variables are

‘?x’ and ‘?truck’ (again, the single quotes are not part of the symbol). 39

Definition 3-3. A term is either a variable or a constant. ... 39

Definition 3-4. A particular variable is referred to as bound (past tense of ‘bind’) if

and only if there is an assignment of the variable to a term. For example, if the

variable ‘?x’ were to be assigned to the constant ‘table’, then one would say that ?x

is bound to table. When a variable is bound to a constant, the variable is said to be

grounded (a reference to the Earth’s surface, I believe). 39

Definition 3-5. A predicate name, or predicate symbol, is a character sequence

having the same syntax as a constant. However, rather than referring to an object in

www.manaraa.com

165

the modeled world, a predicate name is used to semantically refer to a relation in

that world. Some examples of predicate names are ‘on’, ‘at’, and ‘in-city’.

Predicate symbols also have an arity, which indicates the number and names of

terms taken as arguments by that predicate. For example on ?x a has a predicate

symbol named ‘on’ of arity 2, the first term is a variable named ?x and the second

is a constant symbol a. .. 39

Definition 3-6. An atomic formula, or atom, is a statement of fact about the modeled

world. It is syntactically formed by an opening parenthesis symbol ‘(’ followed by

a predicate symbol, followed by a space separated list of terms equal in number to

the predicate’s arity, followed by a closing parenthesis symbol ‘)’. The space

separated list of terms is referred to as arguments or parameters. If all arguments

are grounded, then the atom is also grounded. The following is a comma separated

list of example atoms – the comma is not part of the syntax: (on ?x table), (in

package1 truck1), (in-city Lehigh Bethlehem). Each of the predicate symbols on,

in, in-city have an arity two. The only argument that is a variable is ?x, the rest are

constant symbols. .. 39

Definition 3-7. A substitution is a collection of variable bindings. When a

substitution is applied to an atomic formula a, a new atom is created by replacing

each of the variables in a with the term to which it is mapped (if such a mapping

exists in the substitution). .. 40

Definition 3-8. A world state is a finite set of grounded atoms. Semantically, a world

state is an assertion about all facts that are true. By convention, any atom not

www.manaraa.com

166

appearing in a world state is assumed to be false (the so-called closed-world

assumption). ... 40

Definition 3-9. A tuple is an ordered list of elements; an n-tuple is an ordered list of n

elements, where n is a non-negative integer. For example (a, b, c, d, e) is a 5-tuple.

 ... 40

Definition 3-10. An action a is defined by a 4-tuple (head, pre, neg, pos). The first

element of the tuple, the action head, has syntax similar to that of an atom: an

opening parenthesis, an exclamation point followed by one or more characters,

followed by a space separated list of constants, ended with a closing parenthesis.

An example action head with a single argument is (!putdown block-a). The

exclamation point follows convention, and makes it easier to distinguish between

atomic formulas and the heads of actions. The remaining elements of the tuple are

the action’s preconditions (pre), negative effects (neg), and positive effects (pos),

each of which are finite sets of ground atoms. Additionally, any parameter

appearing in one of these atoms must appear in the head of the action. The purpose

of preconditions and effects are described in the next definition. 40

Definition 3-11. An action a is applicable to world state s if and only if all atoms in

the precondition set of a are members of s. The applicable action a can be applied

to s to create a new world state s’. The new state s’ is a copy of s with all atoms

appearing in the negative effects of a removed, and all positive effects of a added.

If a positive effect of a is already in s, it is not added; if a negative effect of a is not

in s, it is simply ignored. Any atom not mentioned in the effects is assumed to

remain unchanged (called the “STRIPS assumption”). .. 41

www.manaraa.com

167

Definition 3-12. An operator has the same syntax and semantics as an action

(Definition 3-10), with one difference: the arguments appearing in the head may be

variables (and therefore the atoms in the pre, neg, and pos sets may also use

variables). .. 41

Definition 3-13. A classical planning domain, or classical domain description, is

defined by the 3-tuple Δ = (C, P, O), where C is a finite set of constants, P is a

finite set of predicates, and O is a finite set of operators. A constraint on Δ is that

any atom appearing in O must also be a member of P; similarly, any constant

appearing in O must be a member of C. .. 41

Definition 3-14. A classical planning problem is a triple Ψ = (Δ, s0, g), where Δ =

(C, P, O) is a classical planning domain, s0 is a finite set of ground atoms

describing the initial world state of the problem, and g is a finite set of atoms that

define the problems goals. All atoms appearing in s0 and g must be derivable from

C and P. Also, s0 is specified using the “closed world assumption,” which assumes

that any atoms not explicitly asserted as true are false.. 42

Definition 3-15. A plan = a1, a2, . . ., ak is a linearly ordered, finite sequence of

actions; because the head of the action uniquely identifies the operator of which it

is a specialization, only the head of an action is typically used in the enumeration of

the sequence. ... 42

Definition 3-16. A plan = a1, a2, . . ., ak is a solution to a classical planning

problem Ψ if and only if each action in is an instantiation of an operator in O with

constants from C, and furthermore only if the result of applying all of the actions in

sequence starting from s0 yields a world state containing at least all those atoms

www.manaraa.com

168

appearing in the problem’s goal set g. That is, a solution to the classical planning

problem is a sequence of actions (a plan) that transforms the specified initial state

into one of a set of states containing all the specified goals.................................... 42

Definition 4-1. A plan step is an instantiation of an operator (each parameter of the

operator has a substitution to a term) from the input classical planning domain

(Definition 3-13), or the special partial-order planning “initial step”, or the special

partial-order planning “goal step” (see the next two definitions). 72

Definition 4-2. The initial step, often written as s0, is a special non-executable step

that all partial-order plans contain; it is used for representing the initial state of a

given classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical

planning domain, s0 is a finite set of ground atoms describing the initial world state

of the problem, and g is a finite set of atoms that define the goals of the problem. It

is constructed as the instantiation of a “dummy” operator having no preconditions,

and a set of positive effects that contains all the atoms appearing in the problem’s

initial world state, and a set of negative effects that, while typically left empty for

computational time and space efficiency, is semantically understood to contain all

atoms in the domain that are not elements of the set of positive effects. While the

initial step is never to be executed, it is always constrained to be the very first step

of a partial-order plan. ... 72

Definition 4-3. The goal step, often written as s , is a special non-executable step that

all partial-order plans contain; it is used for representing the goal state of a given

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical

planning domain, s0 is a finite set of ground atoms describing the initial world state

www.manaraa.com

169

of the problem, and g is a finite set of atoms that define the problems goals. It is

constructed as the instantiation of a “dummy” operator having no positive nor

negative effects, and a precondition set that contains all the goal atoms appearing in

g. While the goal step is never to be executed, it is always constrained to be the

very last step of a partial-order plan. ... 73

Definition 4-4. An ordering constraint is a relation between two steps in a plan p. It

takes the form si < sj where si and sj are steps, and it semantically means that si must

appear before sj in any linearization of p... 73

Definition 4-5. A binding constraint is a relation between a variable v and term t. It

can take two forms: (1) v = t, which semantically means that v is assigned to be

equal t (also called a codesignation constraint), or (2) v != t, which semantically

means that v is constrained to never take the value t (also called a non-

codesignation constraint). ... 73

Definition 4-6. A causal link is a relation between an atom ai appearing in either the

positive or negative effects set of a step si and an atom aj appearing in the

precondition set of a step sj. The atoms ai and aj must be equivalent, and si must be

constrained to come before sj. Syntactically, a causal link is written si a sj.

Semantically, a causal link reflects that the effect ai of si is being used to support,

or establish, the precondition aj of sj. One can read a causal link as “si causes a to

become true for sj”... 73

Definition 4-7. A partial-order plan is a 4-tuple ρ = (S, , CL, B) of sets of POP

plan elements (Definition 4-14), where: S is a set of steps,  is a set of ordering

constraints involving only elements appearing in S, CL is a set of causal links

www.manaraa.com

170

involving only elements appearing in S, and B is a set of binding constraints (empty

when planning without the use of variables). .. 74

Definition 4-8. A linearization of a partial-order plan (S, , CL, B) is a totally-

ordered sequence of the steps contained in S that is consistent with the ordering

constraints contained in . This is equivalent to a topological sort of the ordering

constraints. ... 74

Definition 4-9. A partial-order plan may contain flaws of only two types: open

preconditions (Definition 4-10), and threats (Definition 4-11). 74

Definition 4-10. A flaw of type open precondition occurs when a step sj in a partial-

order plan has a precondition p, written p@sj, for which no causal link s p sj

exists. In the initial partial-order plan, all the preconditions of s are the only flaws

in the plan. ... 74

Definition 4-11. A flaw of type threat occurs when a causal link si p sj and a step s’

exist in a partial-order plan such that s’ has as an effect the negation of p (i.e., p),

written s’  p, and furthermore s’ can consistently, relative to the ordering

constraints, occur between si and sj, written s’ || (si p sj), in a linearization of the

plan. This is a flaw because, without resolution, it would be possible to create a

linearization in which one or more preconditions needed for a step are not available

in the world state immediately preceding the application of the threatened step.... 74

Definition 4-12. There are two ways to resolve an open precondition flaw p@sj in a

partial-order plan ρ = (S, , CL, B): (1) Operator instantiation: add to S a new

step sr that has an effect that unifies with p, add the ordering constraint sr < sj to the

set, and finally add the causal link sr p sj to the set CL. Alternatively, (2) Step

www.manaraa.com

171

reuse: non-deterministically select a step sr from S such that sr has an effect that

unifies with p, and sr can, relative to the ordering constraints, be consistently

ordered to occur before sj and; given this sr, add the ordering constraint sr < sj to the

set, add finally add the causal link sr p sj to the set CL. 75

Definition 4-13. There are three ways to resolve a flaw of type threat s’ || (si p sj):

promotion, demotion, and separation. Promotion resolves the threat by adding sj

< s’ to the set of ordering constraints, if doing so does not violate the consistency of

the ordering constraints (does not introduce a cycle). Demotion resolves the threat

by adding the ordering s’ < si, with the same restriction about not violating the

consistency of the ordering constraints. Separation resolves the threat by adding a

binding constraint b, where b does not violate the consistency of the set of binding

constraints B, that prevents any effect of s’ from unifying with p to the set of

binding constraints (this is only possible when planning with variables), and adding

two ordering constraints that force s’ to come between si and sj (for systematicity).

For each of the three flaw resolutions, a resolution is only applicable if its

modification to the partial-plan does not violate the consistency of the ordering

constraints, nor the binding constraints. .. 75

Definition 4-14. Given a partial-order plan ρ = (S, , CL, B), and the set of flaws F

extant in ρ, a POP plan element refers to a member of any one of the set of steps,

set of ordering constraints, set of causal links, set of binding constraints, or flaws

(unsupported preconditions and threats) extant in ρ. Plan elements also refer to any

of the parameters, preconditions or effects of a step, any action provided in the

domain. .. 76

www.manaraa.com

172

Definition 4-15. A refinement to an incomplete partial-order plan ρ = (S, , CL, B)

is the resolution, according to Definition 4-12 and Definition 4-13, of any single

flaw in ρ. A plan without any flaws (a complete plan) cannot be refined. Partial

order causal link (pocl) planning does not add elements to S, , CL, B except for

the express purpose of resolving a flaw, although in general, the plan space may be

explored without this restriction (with consequences to algorithmic systematicity).

 ... 76

Definition 4-16. The initial partial-order plan, also called the null plan, given a

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical

planning domain, consists of the initial step s0 and goal step s , and an ordering

constraint that forces s0 to come before s in any solution. 76

Definition 4-17. A partial-order plan ρ is complete if and only if it contains no flaws,

and the sets of ordering and binding constraints are consistent. A linearization of a

complete partial-order plan is guaranteed to be a solution to the classical planning

problem for which it was generated, due to the definition of plan refinements. 77

Definition 4-18. A DCPOP refinement rule precondition rrp = (+|)<POP plan

element>, given a classical planning domain Δ = (C, P, O), rrp is syntactically a

plus or minus, followed by any POP plan element (Definition 4-14) that might exist

in any partial-order plan generated by a classical partial-order planning process

operating on Δ. The semantics for plan elements remains unchanged. 83

Definition 4-19. A DCPOP refinement rule effect rre = (do:|undo:) <POP plan

refinement>, given a classical planning domain Δ = (C, P, O), rre is syntactically a

‘do:’ or ‘undo:’, followed by any POP plan refinement (Definition 4-15) that might

www.manaraa.com

173

be applied to a partial-order plan generated by a classical partial-order planning

process operating on Δ. The syntax and semantics for plan refinements remains

unchanged. ... 84

Definition 4-20. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*, is

syntactically an ‘if’, followed by one or more refinement rule preconditions,

followed by a ‘then’, followed by one or more refinement rule effects. 85

Definition 4-21. A DCPOP planning domain DPD = (Δ, DRR) is a tuple containing

a classical planning domain Δ = (C, P, O), along with a list DRR of one or more

DCPOP refinement rules drr written for Δ. .. 85

Definition 4-22. A DCPOP planning problem DPP = (Ψ, DPD) is tuple containing a

classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a classical

planning domain, along with a DCPOP planning domain DPD = (Δ, DRR). 85

Definition 4-23. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*

(Definition 4-20), where rre is a refinement rule effect (Definition 4-19), drr is

called a regressive rule when every effect in drr is prefixed with an undo; thus

rules of this type only modify a given plan by retracting POP plan refinements

(Definition 4-15). .. 87

Definition 4-24. A DCPOP refinement rule drr = if rrp [, rrp]* then rre [, rre]*

(Definition 4-20), where rre is a refinement rule effect (Definition 4-19), drr is

called a progressive rule when every effect in drr is prefixed with a do; thus rules

of this type only modify a given plan by adding POP plan refinements (Definition

4-15). ... 87

www.manaraa.com

174

Definition 4-25. Given a classical planning problem Ψ (Definition 3-14), and a

collection of refinement rules DRR (Definition 4-20), a planning algorithm is

sound if and only if, all answers returned for Ψ by the algorithm using DRR are

guaranteed to be solutions to Ψ, according to Definition 3-16. 96

Definition 4-26. Given a classical planning problem Ψ (Definition 3-14), and a

collection of refinement rules DRR (Definition 4-20), a planning algorithm using

DRR to generate plans is complete if and only if, whenever Ψ is solvable, the

algorithm generates a solution. .. 97

Definition 5-1. A HIEPPR-POP atom, extends the definition of the classical planning

atom (Definition 3-6) to not only include statements of fact about the modeled

world (e.g. ‘(at truck1 ?loc)’, a predicate symbol with arguments matching its arity

(Definition 3-5)) but to also include statements of fact about the properties of a

partial-order plan derivable in that domain – plan elements as in Definition 4-7 (e.g.

‘Sx < Sy’, where Sx and Sy are steps). As with classical atoms, if all arguments are

grounded, then the atom is also grounded. See the discussion following Definition

4-18 on representing plan elements. .. 112

Definition 5-2. A HIEPPR-POP term is a HIEPPR-POP variable symbol, HIEPPR-

POP constant symbol, atom (Definition 5-1), or assignment expression (Definition

5-8). ... 112

Definition 5-3. A HIEPPR-POP task-symbol s is a constant symbol (Definition 3-1),

and is used to unify tasks (Definition 5-4) with methods (Definition 5-7) that

accomplish them. The term task-name may be used interchangeably. Symbol s can

www.manaraa.com

175

be a primitive task-symbol (Definition 5-5) or non-primitive task-symbol

(Definition 5-6). .. 113

Definition 5-4. A HIEPPR-POP task-atom t is a character sequence having the form (

s t1 t2 … tn) where s is a task-symbol (Definition 5-3), and the arguments t1 t2 …

tn are HIEPPR-POP terms. The task-atom is primitive if s is a primitive task-

symbol, and non-primitive if s is a non-primitive task-symbol. 113

Definition 5-5. A HIEPPR-POP primitive task t is syntactically a ‘!do’ or ‘!undo’,

followed by any POP plan refinement (Definition 4-15) that might be applied to a

partial-order plan generated by a classical partial-order planning process, namely

any planning activity that modifies the elements defining a partial-order plan: the

addition or removal of a plan step, the addition or removal of a causal link, the

addition or removal of an ordering constraint, and the addition or removal of a

variable binding constraint. ... 113

Definition 5-6. A HIEPPR-POP non-primitive task is a task (Definition 5-4) for

which there exists a unifiable HIEPPR-POP method definition in the HIEPPR-POP

domain file. That is, whereas primitive tasks (Definition 5-5) are “built-in” to any

underlying POP planning algorithm, non-primitive tasks require a correspondingly

named method defined in the input domain file. ... 115

Definition 5-7. A HIEPPR-POP method m is a triple HPM = (taskname, parameter-

templates, precondition-subtask-pairs) in which the task-head taskname

(Definition 5-3) is a constant symbol (Definition 3-1) used for identification and

reference purposes, parameter-templates is a list of parameter templates

(Definition 5-8) that allow for the passing of information between methods, and

www.manaraa.com

176

precondition-subtask-pairs is a list of pairs psp = (mp, st) where mp is a list of

method preconditions (Definition 5-9) and st is a list of subtasks (Definition 5-10).

 ... 115

Definition 5-8. A HIEPPR-POP assignment-expression a is syntactically a variable

symbol followed by the symbol ‘=’, followed by a HIEPPR-POP atom (Definition

5-1). ... 115

Definition 5-9. A HIEPPR-POP method precondition hmp is syntactically a DCPOP

refinement rule precondition (Definition 4-18) rrp = (+|)<POP plan element>, the

constant “true”, the constant “false”, or an expression term that is evaluable to

the values true or false. .. 116

Definition 5-10. A HIEPPR-POP method subtask hms is syntactically a DCPOP

refinement rule effect (Definition 4-19) rre = (do:|undo:) <POP plan refinement>,

or a HIEPPR-POP task-atom. .. 117

Definition 5-11. A HIEPPR-POP planning problem HPP = (Ψ, HPD) is tuple

containing a classical planning problem Ψ = (Δ, s0, g), where Δ = (C, P, O) is a

classical planning domain, along with a HIEPPR-POP planning domain HPD = (Δ,

HPM). .. 117

www.manaraa.com

177

Vita

Stephen Montgomery Lee-Urban was born in Long Island, NY, USA on October 7, 1981

to Kathryn and James Urban; his immersion in computers can be traced to Kathy’s

husband of over twenty years, Alfred Lee. Steve attributes much of his achievements to

having three loving and supportive parents.

He attained his Bachelor of Science in Computer Engineering from Lehigh University

in 2003, and his Master’s in Computer Science from the same university in 2005,

graduating with highest honors for both degrees. For a total of two years between 2001

and 2004, Steve worked at AirClic Inc. as a software developer, where he transformed

from an academic and hobbyist programmer into an industrial-grade designer and

implementer.

Between 2003 and 2004, he was a teaching assistant for 7 courses, ranging from

sophomore level programming, senior level computer networking and network

programming, introduction to artificial intelligence, to the design of computer games.

From 2004 to 2011, he worked as a research assistant in the InSyTe lab under Dr.

Muñoz-Avila, researching and publishing on automated planning, reinforcement learning,

hierarchical task network planning, case-based reasoning, and the use of artificial

intelligence techniques in commercial computer games. During that time, he served for

four years on the executive board as the communications officer of Lehigh’s graduate

student senate, and received in 2008 the Graduate Student Life Leadership award for

exemplary scholarship, leadership, and service to the Lehigh graduate student

www.manaraa.com

178

community. That same year, he was inducted into the Rossin Doctoral Fellows Program

of Lehigh’s engineering college, which is for high potential Ph.D. candidates. In 2010, he

was the recipient of a Dean’s Teaching Assistantship, which is awarded to one advanced

Ph.D. student per department who demonstrates an affinity for teaching, and the ability to

provide high-quality assistance in the classroom. That year, he was also the instructor of

record for a four-credit, non-elective Introduction to Computer Science course.

Stephen took one-year off at the end of his doctoral program, in 2011, to be a

consultant as technical lead on a project for Walt Disney Imagineering (through Dr.

Ashwin Ram). While on that project he met his current boss, Dr. Mark Riedl, for whom

he began working in fall of 2011 as a research scientist at The Georgia Institute of

Technology, investigating approaches to narrative computing.

Publications

Conference Papers:

 Zook, A., Lee-Urban, S., Riedl, M., Holden, H., Sottilare, R., and Brawner, K.

(2012) Automated Scenario Generation: Toward Tailored and Optimized

Military Training in Virtual Environments. Proceedings of the 7th International

Conference on the Foundations of Digital Games, Raleigh, North Carolina,

2012.

 Gillespie, K., Karneeb, J., Lee-Urban, S., and Munoz-Avila, H. (2010)

Imitating Inscrutable Enemies: Learning from Stochastic Policy Observation,

Retrieval and Reuse. Proceedings of the 18th International Conference on Case

Based Reasoning (ICCBR 2010). Springer.

www.manaraa.com

179

 Lee-Urban, S., Munoz-Avila, H. (2009) Adaptation Versus Retrieval Trade-

Off Revisited: an Analysis of Boundary Conditions. In Proceedings of the 8th

International Conference on Case-Based Reasoning (ICCBR-09). Springer.

 Auslander, B., Lee-Urban, S., Hogg, C., and Munoz-Avila, H. (2008)

Recognizing The Enemy: Combining Reinforcement Learning with Strategy

Selection using Case-Based Reasoning. In Proceedings of the 9th European

Conference on Case-Based Reasoning (ECCBR-08). Springer.

 Vasta, M., Lee-Urban S. & Muñoz-Avila, H. (2007) RETALIATE: Learning

Winning Policies in First-Person Shooter Games. In Proceedings of the

Seventeenth Innovative Applications of Artificial Intelligence Conference

(IAAI-07). AAAI Press.

 Warfield, I., Hogg, C., Lee-Urban, S., Muñoz-Avila, H. (2007) Adaptation of

Hierarchical Task Network Plans. In Proceedings of the Twentieth Flairs

International Conference (FLAIRS-07). AAAI Press.

 Lee-Urban, S. Muñoz-Avila, H. (2006) A study of Process Languages for

Planning Tasks. In Proceedings of the sixteenth International Conference on AI

Planning and Scheduling (ICAPS-06) Doctoral Consortium.

 Hoang, H., Lee-Urban, S., and Muñoz-Avila, H. (2005) Hierarchical Plan

Representations for Encoding Strategic Game AI. In Proceedings of Artificial

Intelligence and Interactive Digital Entertainment Conference (AIIDE-05).

AAAI Press.

www.manaraa.com

180

Book Chapters:

 Hogg, C., Lee-Urban, S., Muñoz-Avila, H., Auslander, B., Smith, M. Game AI

for Domination Games. In Pedro Gonzales Calero (Ed.) Artificial Intelligence

for Computer Games. Springer Verlag, 2011.

 Lee-Urban, S., Smith, M. & Munoz-Avila, H. 2008. Learning Winning

Policies in Team-Based First-Person Shooter Games. AI Game Programing

Wisdom 4. Charles River Media.

Theses:

 Lee-Urban, S. Hierarchical Planning Knowledge for Refining Partial-Order

Plans. Doctoral Thesis, 2012.

 Lee-Urban, S. TMK Models to HTNs: Translating Process Models into

Hierarchical Task Networks. Master's thesis, 2005.

Workshop Papers:

 Zook, A., Lee-Urban, S., Drinkwater, M., and Riedl, M. (2012) Skill-based

Mission Generation: A Data-driven Temporal Player Modeling Approach. In

Proceedings of the 3rd Workshop on Procedural Content Generation in Games,

Raleigh, North Carolina, 2012.

 Li, B., Lee-Urban, S., Appling, D.S., and Riedl, M. (2012) Automatically

Learning to Tell Stories about Social Situations from the Crowd. In

Proceedings of the LREC 2012 Workshop on Computational Models of

Narrative, Istanbul, Turkey, 2012.

 Hogg, C., Lee-Urban, S., Auslander, B., and Munoz-Avila, H. (2008)

Discovering Feature Weights for Feature-Based Indexing of Q-Tables. In

www.manaraa.com

181

Proceedings of the Uncertainty and Knowledge Discovery in CBR Workshop

at the 9th European Conference on Case-Based Reasoning (ECCBR-08).

 Sanchez-Ruiz, A., Lee-Urban, S., Muñoz-Avila, H., Diaz-Agude, B., &

Gonzalez-Calero, P. (2007) Game AI for a Turn-based Strategy Game with

Plan Adaptation and Ontology-based retrieval. In Proceedings of the workshop

on Planning in Games at the International Conference on Automated Planning

and Scheduling (ICAPS-07).

 Lee-Urban, S., Parker, A., Kuter, U., Muñoz-Avila, H., & Nau, D. (2007)

Transfer Learning of Hierarchical Task-Network Planning Methods in a Real-

Time Strategy Game. In Proceedings of the AI Planning and Learning

Workshop (AIPL) at the International Conference on Automated Planning and

Scheduling (ICAPS-07).

 Ponsen, M., Lee-Urban, S., Muñoz-Avila, H., Aha, D., and Molineaux, M.

(2005) Stratagus: An Open-Source Game Engine for Research in Real-Time

Strategy Games. Workshop for International Joint Conference on Artificial

Intelligence (IJCAI-05).

